日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間[a,b],使[ab]上的值域是[2a,2b],那么稱倍增函數(shù)

          I)判斷=是否為倍增函數(shù),并說(shuō)明理由;

          II)證明:函數(shù)=倍增函數(shù);

          III)若函數(shù)=ln)是倍增函數(shù),寫出實(shí)數(shù)m的取值范圍。(只需寫出結(jié)論)

          【答案】(I)見解析;(II)見證明;(III)<m<0

          【解析】

          I)根據(jù)時(shí),判斷出倍增函數(shù)”.II)首先利用導(dǎo)數(shù)判斷出為單調(diào)遞增函數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)有且只有兩個(gè)零點(diǎn),進(jìn)而判斷出函數(shù)倍增函數(shù)”.III為增函數(shù),且倍增函數(shù),所以,即;所以方程,化為有兩個(gè)不相等的實(shí)數(shù)根,且兩根都大于零.,解得.所以的取值范圍是.

          解:(I=倍增函數(shù),理由如下:

          =的定義域是R,且在[0,+)上單調(diào)遞增;

          所以,當(dāng) [0,2]時(shí),[0,4]

          所以,=倍增函數(shù)。

          II=的定義域是R

          當(dāng)x>0時(shí),=>0,所以在區(qū)間(0+)上單調(diào)遞增。

          設(shè)=2x=,=。

          設(shè)hx==,=>0,

          所以,hx)在區(qū)間(-,+)上單調(diào)遞增。

          h0=2<0,h1=e1>0

          所以,存在唯一的∈(0,1),使得h==0,

          所以,當(dāng)x變化時(shí),的變化情況如下表:

          x

          (-,

          +

          0

          +

          因?yàn)?/span>g1=e3<0,g2=>0

          所以,存在唯一的∈(1,2),使得=0

          =0,所以函數(shù)只有兩個(gè)零點(diǎn),即0。

          所以=0=2。

          結(jié)合在區(qū)間(0+)上單調(diào)遞增可知,當(dāng)x[0]時(shí)的值域是[0,2]

          所以,令[ab]=[0,]=倍增函數(shù)。

          III<m<0。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          (1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);

          (2)若,使得,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.

          為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②

          (1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;

          (2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

          (Ⅰ)當(dāng)時(shí),證明:;

          (Ⅱ)當(dāng)時(shí),討論函數(shù)的極值點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等腰三角形,, 、 分別為 , 的中點(diǎn),將 沿 折到 的位置, ,取線段 的中點(diǎn)為 .

          (1)求證: 平面 ;

          (2)求二面角 的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過(guò)程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無(wú)限精細(xì)的結(jié)構(gòu)。也就是說(shuō),在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形

          A. 81 B. 121 C. 364 D. 1093

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】偶函數(shù)定義域?yàn)?/span>,其導(dǎo)函數(shù)是,當(dāng)時(shí),有,則關(guān)于的不等式的解集為( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知一個(gè)三棱錐的三視圖如圖所示,其中俯視圖是頂角為的等腰三角形,側(cè)視圖為直

          角三角形,則該三棱錐的表面積為____,該三棱錐的外接球體積為____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(2017高考新課標(biāo)Ⅲ19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

          (1)證明:平面ACD⊥平面ABC;

          (2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案