日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,底面ABCD是邊長為3的正方形,平面ADEF⊥平面ABCD,AFDE,ADDEAF,DE.

          1)求直線CA與平面BEF所成角的正弦值;

          2)在線段AF上是否存在點M,使得二面角MBED的大小為60°?若存在,求出的值;若不存在,說明理由.

          【答案】1;(2)存在;.

          【解析】

          1)以D為坐標(biāo)原點,射線DADC,DE分別為x軸,y軸,z軸的正半軸,建立空間坐標(biāo)系,求出坐標(biāo),進而求出坐標(biāo),求出平面BEF的法向量坐標(biāo),按空間向量線面角公式,即可求解;

          (2)設(shè)M30,t),0≤t,求出平面MBE的法向量坐標(biāo),利用是平面BED的一個法向量,按空間向量面面角公式,即可求出結(jié)論.

          1)因為DA,DC,DE兩兩垂直,所以以D為坐標(biāo)原點,

          射線DA,DC,DE分別為x軸,y軸,z軸的正半軸,

          建立空間直角坐標(biāo)系Dxyz,如圖所示.A3,0,0),

          F3,0,),E0,0),B3,30),

          C0,30),=(3,-30),=(-3,-3,3),

          =(30,.

          設(shè)平面BEF的法向量為=(x1y1,z1),

          x1,得=(2,3.

          所以

          所以直線CA與平面BEF所成角的正弦值為.

          2)假設(shè)存在點M在線段AF上滿足條件,

          設(shè)M3,0,t),0≤t,

          =(0,-3,t),=(-3,-3.

          設(shè)平面MBE的法向量為=(x2,y2,z2),

          y2t,得m=(tt,3.

          易知=(3,-3,0)是平面BED的一個法向量,

          所以|,

          整理得2t2t150,解得tt(舍去),

          故在線段AF上存在點M,使得二面角MBED的大小為60°,此時.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)xlnx,g(x)x2ax.

          1)求函數(shù)f(x)在區(qū)間[tt1](t0)上的最小值m(t);

          2)令h(x)g(x)f(x),A(x1,h(x1)),B(x2h(x2))(x1x2)是函數(shù)h(x)圖像上任意兩點,且滿足1,求實數(shù)a的取值范圍;

          3)若x(0,1],使f(x)≥成立,求實數(shù)a的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知南北回歸線的緯度為,設(shè)地球表面某地正午太陽高度角為,為此時太陽直射緯度,為該地的緯度值,那么這三個量之間的關(guān)系是.當(dāng)?shù)叵陌肽?/span>取正值,冬半年取負(fù)值,如果在北半球某地(緯度為)的一幢高為的樓房北面蓋一新樓,要使新樓一層正午的太陽全年不被前面的樓房遮擋,兩樓的距離應(yīng)不小于______(結(jié)果用含有的式子表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】由國家統(tǒng)計局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入(單位:萬元)的數(shù)據(jù)如下表:

          年份

          2012

          2013

          2014

          2015

          2016

          2017

          2018

          年份代號

          1

          2

          3

          4

          5

          6

          7

          人均可支配收入

          1.65

          1.83

          2.01

          2.19

          2.38

          2.59

          2.82

          1)求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

          2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預(yù)測2019年中國居民人均可支配收入

          附注:參考數(shù)據(jù):,

          參考公式:回歸直線方程的斜率和截距的最小二乘估計公式分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.

          1)證明:平面.

          2)若,當(dāng)三棱錐的體積最大時,求到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點DE,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.

          (Ⅰ)求證:MN∥平面BDE;

          (Ⅱ)求二面角C-EM-N的正弦值;

          (Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的兩個焦點為、,P為該雙曲線上一點,滿足,P到坐標(biāo)原點O的距離為d,且,則________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方體,過對角線作平面交棱于點E,交棱于點F,則:

          ①平面分正方體所得兩部分的體積相等;

          ②四邊形一定是平行四邊形;

          ③平面與平面不可能垂直;

          ④四邊形的面積有最大值.

          其中所有正確結(jié)論的序號為(

          A.①④B.②③C.①②④D.①②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          1)當(dāng)時,求不等式的解集;

          2)若不等式的解集包含[–11],求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案