日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,FBE的中點(diǎn),

          求證:(1平面ABC;

          2平面EDB.

          3)求幾何體的體積.

          【答案】1)見解析(2)見解析(3

          【解析】

          1)如圖:證明得到答案.

          2)證明得到答案.

          3)幾何體轉(zhuǎn)化為,利用體積公式得到答案.

          1)F分別是BE的中點(diǎn),取BA的中點(diǎn)M

          FMEA,FMEA1

          EACD都垂直于平面ABC,∴CDEA,

          CDFM,又CDFM

          ∴四邊形FMCD是平行四邊形,∴FDMC,

          FD平面ABC,MC平面ABC

          FD∥平面ABC

          2MAB的中點(diǎn),△ABC是正三角形,所以CMAB

          EA垂直于平面ABCCMAE,

          AEABA,所以CM⊥面EAB,∵AFEAB

          CMAF,又CMFD,從而FDAF,

          FBE的中點(diǎn),EAAB所以AFEB

          EB,FD是平面EDB內(nèi)兩條相交直線,所以AF⊥平面EDB

          3)幾何體的體積等于

          中點(diǎn),連接

          平面

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1 , CC1 , BC的中點(diǎn),AE⊥A1B1 , D為棱A1B1上的點(diǎn).

          (1)證明:DF⊥AE;
          (2)求平面DEF與平面ABC所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正三棱錐P﹣ABC中E,F(xiàn)分別是AC,PC的中點(diǎn),若EF⊥BF,AB=2,則三棱錐P﹣ABC的外接球的表面積(
          A.4π
          B.6π
          C.8π
          D.12π

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (1)若函數(shù)在其定義域上為單調(diào)增函數(shù),求的取值范圍;

          (2)記的導(dǎo)函數(shù)為,當(dāng)時(shí),證明:存在極小值點(diǎn),且.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

          (1)求直線的普通方程和圓的直角坐標(biāo)方程;

          (2)若點(diǎn)是直線上的動點(diǎn),過作直線與圓相切,切點(diǎn)分別為、,若使四邊形的面積最小,求此時(shí)點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,.

          1)求圖中的值;

          2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分;

          3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求英語成績在的人數(shù).

          分?jǐn)?shù)段

          1:2

          2:1

          6:5

          1:2

          1:1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
          (Ⅰ)求證:BC⊥平面ACFE;
          (Ⅱ)點(diǎn)M在線段EF上運(yùn)動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.

          (1)求點(diǎn)的坐標(biāo);

          (2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;

          (3)若把方程的正實(shí)根從小到大依次排列為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

          1)求曲線的普通方程和直線的傾斜角;

          2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

          查看答案和解析>>

          同步練習(xí)冊答案