日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) ,其中a為常數(shù),
          (1)若函數(shù)f(x)為奇函數(shù),求a的值;
          (2)若函數(shù)f(x)在(2,5)上有意義,求實數(shù)a的取值范圍.

          【答案】
          (1)解:因為f(x)為奇函數(shù),所以f(﹣x)+f(x)=0對定義域內(nèi)的任意x恒成立,

          對定義域內(nèi)的任意x恒成立,

          ,即(a2﹣1)x2=0對定義域內(nèi)的任意x恒成立,

          故a2﹣1=0,即a=±1…(3分)

          當a=1時, 為奇函數(shù),滿足條件;

          當a=﹣1時, 無意義,故不成立.

          綜上,a=1


          (2)解:若f(x)在(2,5)內(nèi)恒有意義,則當x∈(2,5)時,有 恒成立,

          因為x>2,所以x+3>0,從而ax﹣3>0在x∈(2,5)上恒成立,

          令g(x)=ax﹣3,則

          當a=0時,不合題意

          當a≠0時, ,解得 ,

          所以,實數(shù)a的取值范圍是


          【解析】(1)由奇函數(shù)的定義可求出a的值,經(jīng)討論舍去a=﹣1。(2)根據(jù)題意可得到ax﹣3>0在x∈(2,5)上恒成立,構造函數(shù)利用其x∈(2,5)上恒成立,得到不等式組解得a的取值范圍。
          【考點精析】解答此題的關鍵在于理解函數(shù)的奇偶性的相關知識,掌握偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設實數(shù)x,y滿足條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 的最小值為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線C:x2=2py(p>0),過其焦點作斜率為1的直線l交拋物線C于M、N兩點,且|MN|=16. (Ⅰ)求拋物線C的方程;
          (Ⅱ)已知動圓P的圓心在拋物線C上,且過定點D(0,4),若動圓P與x軸交于A、B兩點,且|DA|<|DB|,求 的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合A={x|x2﹣1=0},B={x|x2﹣2ax+b=0},若A∪B=A,求實數(shù)a,b滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=( + )x3(a>0且a≠1).
          (1)求函數(shù)f(x)的定義域;
          (2)討論函數(shù)f(x)的奇偶性;
          (3)求a的取值范圍,使f(x)>0在定義域上恒成立.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知全集U={x∈N*|x≤9},(UA)∩B={1,6},A∩(UB)={2,3},(UA)∩(UB)={4,5,7,8},則B=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知關于x的方程x2+2mx+2m+1=0(m∈R).
          (1)若方程有兩實根,其中一根在區(qū)間(﹣1,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m的取值范圍;
          (2)若方程兩實根均在區(qū)間(﹣1,2)內(nèi),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.
          (1)求m﹣n的值;
          (2)若A∪B=A,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時,有 >0.
          (Ⅰ)證明f(x)在[﹣1,1]上是增函數(shù);
          (Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
          (Ⅲ)若f(x)≤t2﹣2at+1對x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案