年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程設(shè)橢圓的普通方程為
(1)設(shè)為參數(shù),求橢圓
的參數(shù)方程;
(2)點(diǎn)是橢圓
上的動點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓
的兩個焦點(diǎn),
是橢圓上的點(diǎn),且
.
(1)求的周長;
(2)求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的焦點(diǎn)分別為
,且過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓
內(nèi)一點(diǎn),直線
交橢圓
于
兩點(diǎn),且
為線段
的中點(diǎn),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:,
為拋物線上一點(diǎn)
,
為
關(guān)于
軸對稱的點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若,求
點(diǎn)的坐標(biāo);
(2)若過滿足(1)中的點(diǎn)
作直線
交拋物線
于
兩點(diǎn), 且斜率分別為
,且
,求證:直線
過定點(diǎn),并求出該定點(diǎn)坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知A(1,1)是橢圓(
)上一點(diǎn),F1,F(xiàn)2
是橢圓上的兩焦點(diǎn),且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點(diǎn),且直線AC,AD的斜率分別為 ,若存在常數(shù)
使
/,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)雙曲線 (a>1,b>0)的焦距為2c,直線
過點(diǎn)(a,0)和(0,b),且點(diǎn)(1,0)到直線
的距離與點(diǎn)(-1,0)到直線
的距離之和s≥
c.求雙曲線的離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在極坐標(biāo)系中,圓ρ=2cos θ的垂直于極軸的兩條切線方程分別為( )
A.θ=0(ρ∈R)和ρcos θ=2 |
B.θ=![]() |
C.θ=![]() |
D.θ=0(ρ∈R)和ρcos θ=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com