【題目】已知關(guān)于的方程
的兩個(gè)根分別為
其中
,則
的取值范圍是( )
A. B.
C.
D.
【答案】A
【解析】設(shè),則
是
的零點(diǎn),
,
即
,作出平面區(qū)域如圖,
表示區(qū)域內(nèi)的點(diǎn)
與
連線(xiàn)的斜率,
由圖象可知,當(dāng)過(guò)的直線(xiàn)平行于
時(shí),斜率最小為
,過(guò)
的直線(xiàn)與
軸平行時(shí),斜率最大為
,故選A.
【方法點(diǎn)晴】本題主要考查一元二次方程根的分布,數(shù)學(xué)的轉(zhuǎn)化與劃歸思想以及線(xiàn)性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬難題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移(轉(zhuǎn))、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移(旋轉(zhuǎn))變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.解答本題的關(guān)鍵有兩點(diǎn),一是將根的分布問(wèn)題轉(zhuǎn)換為不等式問(wèn)題,二是將不等式問(wèn)題轉(zhuǎn)化為線(xiàn)性規(guī)劃問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn , 且滿(mǎn)足a1=1,an+1=2 +1,n∈N* .
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)k,使ak , S2k﹣1 , a4k成等比數(shù)列?若存在,求k的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若動(dòng)點(diǎn)在直線(xiàn)
上,動(dòng)點(diǎn)
在直線(xiàn)
上,設(shè)線(xiàn)段
的中點(diǎn)為
,且
,則
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開(kāi)始計(jì)數(shù)的. [附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與
之間存在著線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點(diǎn),B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且
,求三棱錐A-BCB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為
,
為
的中點(diǎn),
為線(xiàn)段
上的動(dòng)點(diǎn),過(guò)點(diǎn)
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫(xiě)出所有正確命題的編號(hào)).
①當(dāng)時(shí),
為四邊形;②當(dāng)
時(shí),
為等腰梯形;
③當(dāng)時(shí),
與
的交點(diǎn)
滿(mǎn)足
;
④當(dāng)時(shí),
為五邊形;
⑤當(dāng)時(shí),
的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn)
,且離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓
交于
、
兩點(diǎn),以
為對(duì)角線(xiàn)作正方形
,記直線(xiàn)
與
軸的交點(diǎn)為
,問(wèn)
、
兩點(diǎn)間距離是否為定值?如果是,求出定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=a﹣bcos(2x+ )(b>0)的最大值為3,最小值為﹣1.
(1)求a,b的值;
(2)當(dāng)求x∈[ ,
π]時(shí),函數(shù)g(x)=4asin(bx﹣
)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
(1)判定AE與PD是否垂直,并說(shuō)明理由.
(2)設(shè)AB=2,若H為PD上的動(dòng)點(diǎn),若△AHE面積的最小值為 , 求四棱錐P﹣ABCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com