日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (1)當(dāng)時(shí),求函數(shù)的極值;
          (2)求函數(shù)的單調(diào)區(qū)間.

          (1),無極大值;(2)見解析.

          解析試題分析:(1)先找到函數(shù)的定義域,在定義域內(nèi)進(jìn)行作答,在條件下求出函數(shù)的導(dǎo)函數(shù),根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,判斷函數(shù)的極值;(2)先求出函數(shù)的導(dǎo)函數(shù),其導(dǎo)函數(shù)中含有參數(shù),所以要進(jìn)行分類討論,對(duì)分三種情況,進(jìn)行討論,分別求出每種情況下的函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間.
          試題解析:(1) 函數(shù)的定義域是,       1分
          當(dāng)時(shí),,
          所以上遞減,在上遞增,
          所以函數(shù)的極小值為,無極大值;                    4分
          (2)定義域,           5分
          ①當(dāng),即時(shí),由,得的增區(qū)間為;由,得的減區(qū)間為;                7分
          ②當(dāng),即時(shí),由,得的增區(qū)間為;由,得的減區(qū)間為;        9分
          ③當(dāng),即時(shí),由,得的增區(qū)間為;由,得的減區(qū)間為;        11分
          綜上,時(shí),的增區(qū)間為,減區(qū)間為;
          時(shí),的增區(qū)間為,減區(qū)間為;
          時(shí),的增區(qū)間為,減區(qū)間為.           13分
          考點(diǎn):1、對(duì)數(shù)函數(shù)的定義域;2、含參數(shù)的分類討論思想;3、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;4、解不等式;5、求函數(shù)的極值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (Ⅰ)證明:當(dāng),;
          (Ⅱ)設(shè)當(dāng)時(shí),,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若是函數(shù)的極值點(diǎn),求的值;
          (2)求函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          解不等式;(4分)
          事實(shí)上:對(duì)于成立,當(dāng)且僅當(dāng)時(shí)取等號(hào).由此結(jié)論證明:.(6分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知二次函數(shù)滿足的圖像在處的切線垂直于直線.
          (1)求的值;
          (2)若方程有實(shí)數(shù)解,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)若函數(shù)滿足:
          ①對(duì)任意的,,當(dāng)時(shí),有成立;
          ②對(duì)恒成立.求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù) 
          (1)證明 當(dāng),時(shí),;
          (2)討論在定義域內(nèi)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)處取得極值,且曲線在點(diǎn)處的切線垂直于直線
          (1)求的值;
          (2)若函數(shù),討論的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題14分) 已知函數(shù),若
          (1)求曲線在點(diǎn)處的切線方程;
          (2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
          (3)當(dāng)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案