日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項(xiàng)都是正數(shù)的等比數(shù)列,滿足

          (I)證明數(shù)列是等差數(shù)列;

          (II)若,當(dāng)時(shí), 不等式對(duì)的正整數(shù)恒成立,求的取值范圍.

           

          【答案】

           

          (II)由(Ⅰ)設(shè)的公差為,知,

          ,則

          …(8分)

          ∴函數(shù)單調(diào)遞增, 當(dāng)時(shí),

           ,即,     …………(10分)

          ,

          ,∴的取值范圍是. 

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2
          Sn
          是an+2 和an的等比中項(xiàng).
          (Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)證明
          1
          S1
          +
          1
          S2
          +…+
          1
          Sn
          <1;
          (Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
          an2
          2
          恒成立,求這樣的正整數(shù)m共有多少個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:福建省三明一中2012屆高三11月學(xué)段考試數(shù)學(xué)理科試題 題型:044

          已知等比數(shù)列{an}的各項(xiàng)都是正數(shù),且2a1+3a2=1,a3是9a2與a6的等比中項(xiàng),

          (Ⅰ)求{an}的通項(xiàng)公式;

          (Ⅱ)設(shè)數(shù)列{bn}滿足bn,求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

          (本小題滿分12分)
          設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意,的等比中項(xiàng).
          (Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
          (Ⅱ)證明
          (Ⅲ)設(shè)集合,,且,若存在,使對(duì)滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

          (本小題滿分12分)

          設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意的等比中項(xiàng).

          (Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

          (Ⅱ)證明;

          (Ⅲ)設(shè)集合,且,若存在,使對(duì)滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年重慶市七區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2是an+2 和an的等比中項(xiàng).
          (Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)證明++…+<1;
          (Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>恒成立,求這樣的正整數(shù)m共有多少個(gè)?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案