日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABCD為矩形,點AEB、F共面,均為等腰直角三角形,且若平面⊥平面

          )證明:平面平面ADF

          )問在線段EC上是否存在一點G,使得BG∥平面若存在,求出此時三棱錐GABE與三棱錐的體積之比,若不存在,請說明理由.

          【答案】)證明見解析;()存在,體積比為.

          【解析】

          (1)由題意得:由ABCD為矩形可得到BCAB,再由平面⊥平面可得到BCAF,所以AF⊥平面BCF,再根據(jù)面面垂直的判斷定理可得到平面平面ADF;

          (2)通過已知條件可得到平面BCE∥平面ADF,延長EB到點H,使得BH =AF,得到ABHF是平行四邊形,從而可得到HFDC是平行四邊形,即有CHDF.,過點BCH的平行線,交EC于點G,此點G為所求的G點即存在,由EG=,可得到

          )∵ABCD為矩形,∴BCAB,

          又∵平面ABCD⊥平面AEBF,BC平面ABCD,平面ABCD平面AEBF=AB,

          BC⊥平面AEBF,

          又∵AF平面AEBF,∴BCAF,

          ∵∠AFB=90°,即AFBF,且BC、BF平面BCF,BCBF=B,

          AF⊥平面BCF,

          又∵AF平面ADF,∴平面ADF平面BCF.

          )∵BCAD,AD平面ADF,∴BC∥平面ADF.

          均為等腰直角三角形,且90°

          ∴∠FAB=ABE=45°,∴AFBE,又AF平面ADF,∴BE∥平面ADF,

          BCBE=B,∴平面BCE∥平面ADF.

          延長EB到點H,使得BH =AF,又BC AD,連CHHF,易證ABHF是平行四邊形,

          HFABCD,∴HFDC是平行四邊形,∴CHDF.

          過點BCH的平行線,交EC于點G,即BGCHDF,(DF平面CDF

          BG∥平面CDF,即此點G為所求的G點,

          如圖:

          BE=,∴EG=,又

          ,

          所以

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱柱,底面為等腰梯形,;,側(cè)面底面.

          1)在側(cè)面中能否作一條直線使其與平行?如果能,請寫出作圖過程并給出證明;如果不能,請說明理由;

          2)求四面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)求函數(shù)上的最小值

          (Ⅲ)若, 求使方程有唯一解的的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中,,是自然對數(shù)的底數(shù).

          1)若曲線在點處的切線為,求的值;

          2)求函數(shù)的極大值;

          3)設(shè)函數(shù),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出停課不停學(xué)的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不少于120分的有10人,統(tǒng)計成績后得到如下列聯(lián)表:

          分?jǐn)?shù)不少于120

          分?jǐn)?shù)不足120

          合計

          線上學(xué)習(xí)時間不少于5小時

          4

          19

          線上學(xué)習(xí)時間不足5小時

          10

          合計

          45

          1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)

          2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時間不少于5小時和線上學(xué)習(xí)時間不足5小時的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時間不足5小時的概率.

          (下面的臨界值表供參考)

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某次知識競賽規(guī)則如下:在主辦方預(yù)設(shè)的7個問題中,選手若能連續(xù)正確回答出兩個問題,即停止答題,晉級下一輪.假設(shè)某選手正確回答每個問題的概率都是0.7,且每個問題的回答結(jié)果相互獨立,則該選手恰好回答了5個問題就晉級下一輪的概率等于(

          A.0.07497B.0.92503C.0.1323D.0.6174

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C1ab0),F1,F2為橢圓的左右焦點,過F2的直線交橢圓與A、B兩點,∠AF1B90°,2,則橢圓的離心率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨機(jī)取一個由01構(gòu)成的8位數(shù),它的偶數(shù)位數(shù)字之和與奇數(shù)位數(shù)字之和相等的概率為____________ .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論函數(shù)的零點個數(shù);

          2)若為給定的常數(shù),且),記在區(qū)間上的最小值為,求證:.

          查看答案和解析>>

          同步練習(xí)冊答案