日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+3|

          (1)解不等式f(x)6;

          (2)記f(x)的最小值是m,正實(shí)數(shù)a,b滿足2ab+a+2b=m,求a+2b的最小值.

          【答案】1)(,2]∪[1,+∞).(2

          【解析】試題分析:)利用零點(diǎn)分段討論法進(jìn)行求解;)利用三角不等式求出函數(shù)的最值,再利用基本不等式進(jìn)行求解.

          試題解析:(1)當(dāng)x時(shí),f(x)=﹣2﹣4x,

          f(x)6解得x﹣2,綜合得x﹣2,…

          當(dāng)時(shí),f(x)=4,顯然f(x)6不成立,

          當(dāng)x時(shí),f(x)=4x+2,

          f(x)6,解得x1,綜合得x1,…

          所以f(x)6的解集是(﹣∞,﹣2]∪[1,+∞).…

          (2)f(x)=|2x﹣1|+|2x+3|≥|(2x﹣1)﹣(2x+3)|=4,

          f(x)的最小值m=4. …

          a2b,…

          2ab+a+2b=4可得4﹣(a+2b),

          解得a+2b,

          a+2b的最小值為.…

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2017年9月,國務(wù)院發(fā)布了《關(guān)于深化考試招生制度改革的實(shí)施意見》.某地作為高考改革試點(diǎn)地區(qū),從當(dāng)年秋季新入學(xué)的高一學(xué)生開始實(shí)施,高考不再分文理科.每個(gè)考生,英語、語文、數(shù)學(xué)三科為必考科目,并從物理、化學(xué)、生物、政治、歷史、地理六個(gè)科目中任選三個(gè)科目參加高考.物理、化學(xué)、生物為自然科學(xué)科目,政治、歷史、地理為社會(huì)科學(xué)科目.假設(shè)某位考生選考這六個(gè)科目的可能性相等.

          (1)求他所選考的三個(gè)科目中,至少有一個(gè)自然科學(xué)科目的概率;

          (2)已知該考生選考的三個(gè)科目中有一個(gè)科目屬于社會(huì)科學(xué)科目,兩個(gè)科目屬于自然科學(xué)科目.若該考生所選的社會(huì)科學(xué)科目考試的成績獲等的概率都是0.8,所選的自然科學(xué)科目考試的成績獲等的概率都是0.75,且所選考的各個(gè)科目考試的成績相互獨(dú)立.用隨機(jī)變量表示他所選的三個(gè)科目中考試成績獲等的科目數(shù),求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求以圓C1x2y212x2y130和圓C2x2y212x16y250的公共弦為直徑的圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 (常數(shù)ab>0,且a>b)的左、右焦點(diǎn)分別為F1,F2,M,N為短軸的兩個(gè)端點(diǎn),且四邊形F1MF2N是面積為4的正方形.

          (1)求橢圓的方程;

          (2)過原點(diǎn)且斜率分別為k和-k(k≥2)的兩條直線與橢圓的交點(diǎn)為A、B、CD(按逆時(shí)針順序排列,且點(diǎn)A位于第一象限內(nèi)),求四邊形ABCD的面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)公差大于0的等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=15,且a1,a4a13成等比數(shù)列,記數(shù)列 的前n項(xiàng)和為Tn

          (Ⅰ)求Tn

          (Ⅱ)若對(duì)于任意的nN*,tTnan+11恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足,且是等比數(shù)列.

          1)求數(shù)列的通項(xiàng)公式;

          2)求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.

          (2)當(dāng)時(shí),不等式上恒成立,求k的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】通過隨機(jī)詢問110名大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到列聯(lián)表:

          總計(jì)

          愛好

          40

          20

          60

          不愛好

          20

          30

          50

          總計(jì)

          60

          50

          110

          K2,得K2≈7.8.

          附表:

          P(K2k0)

          0.050

          0.010

          0.001

          k0

          3.841

          6.635

          10.828

          參照附表,得到的正確結(jié)論是(  )

          A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

          B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

          C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

          D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似的表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.

          1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

          2)若每噸產(chǎn)品平均出廠價(jià)為40萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤?最大利潤是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案