日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ln(1+x)-ax的圖象在x=1處的切線與直線x+2y-1=0平行.
          (Ⅰ)求實(shí)數(shù)a的值;
          (Ⅱ)若方程f (x)=在[2,4]上有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;(參考數(shù)據(jù):e=2.71 828…)
          (Ⅲ)設(shè)常數(shù)p≥1,數(shù)列{an}滿足an+1=an+ln(p-an)(n∈N*),a1=lnp,求證:an+1≥an
          【答案】分析:(I)由函數(shù)f(x)=ln(1+x)-ax的圖象在x=1處的切線與直線x+2y-1=0平行,則在x=1處的導(dǎo)數(shù)等于直線x+2y-1=0的斜率,從而求解.
          (II)由(I)有f(x)=ln(1+x)-x,先將原方程整理為4ln(1+x)-x=m.再利用圖象的交點(diǎn)來解決.(III)由f(x)=ln(1+x)-x(x>-1)用導(dǎo)數(shù)法證明當(dāng)x∈(-1,+∞)時(shí),f(x)≤0,得到ln(1+x)≤x.再由已知有p>an,構(gòu)建an+1-an=ln(p-an)=ln(1+p-1-an)模型,只要再證11+p-1-an>1即可
          解答:解:(I)∵

          由題知,
          解得a=1.(3分)

          (II)由(I)有f(x)=ln(1+x)-x,
          ∴原方程可整理為4ln(1+x)-x=m.
          令g(x)=4ln(1+x)-x,得,
          ∴當(dāng)3<x≤4時(shí)g'(x)<0,當(dāng)2≤x<3時(shí)g'(x)>0,g'(3)=0,
          即g(x)在[2,3]上是增函數(shù),在[3,4]上是減函數(shù),
          ∴在x=3時(shí)g(x)有最大值4ln4-3.(6分)
          ∵g(2)=4ln3-2,g(4)=4ln5-4,
          ∴g(2)-g(4)==2
          由9e≈24.46<25,于是
          ∴g(2)<g(4).
          ∴m的取值范圍為[4ln5-4,4ln4-3).(9分)

          (III)由f(x)=ln(1+x)-x(x>-1)有,
          顯然f'(0)=0,當(dāng)x∈(0,+∞)時(shí),f'(x)<0,當(dāng)x∈(-1,0)時(shí),f'(x)>0,
          ∴f(x)在(-1,0)上是增函數(shù),在[0,+∞)上是減函數(shù).
          ∴f(x)在(-1,+∞)上有最大值f(0),而f(0)=0,
          ∴當(dāng)x∈(-1,+∞)時(shí),f(x)≤0,因此ln(1+x)≤x.(*)(11分)
          由已知有p>an,即p-an>0,所以p-an-1>-1.
          ∵an+1-an=ln(p-an)=ln(1+p-1-an),
          ∴由(*)中結(jié)論可得an+1-an≤p-1-an,即an+1≤p-1(n∈N*).
          ∴當(dāng)n≥2時(shí),an+1-an=ln(p-an)≥ln[p-(p-1)]=0,即an+1≥an
          當(dāng)n=1,a2=a1+ln(p-lnp),
          ∵lnp=ln(1+p-1)≤p-1,
          ∴a2≥a1+ln[p-(p-1)]=a1,結(jié)論成立.
          ∴對n∈N*,an+1≥an.(14分)
          點(diǎn)評:本題主要考查導(dǎo)數(shù)的幾何意義,用導(dǎo)數(shù)法解方程根的問題以及考查單調(diào)數(shù)列,綜合性很強(qiáng),要注意已證結(jié)論的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案