日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過(guò)定點(diǎn)P(3,5),傾斜角為.

          (1)寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程.

          (2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|PA|·|PB|的值.

          【答案】(1) , x2+y2-2x-4y-11=0.

          (2)3.

          【解析】

          試題分析:(1)對(duì)曲線C,利用消去即得:,這就是曲線C的標(biāo)準(zhǔn)方程一般地,直線的參數(shù)方程為,為參數(shù),將條件代入即得

          2)根據(jù)直線的參數(shù)方程中的參數(shù)幾何意義知,因此將直線的參數(shù)方程代入圓的方程可得,再利用韋達(dá)定理即可得的值

          試題解析:()圓C,直線,為參數(shù)5

          )將直線的參數(shù)方程代入圓的方程可得, 8

          設(shè)是方程的兩個(gè)根,則,所以10

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=cos x,對(duì)任意的實(shí)數(shù)t,記f(x)在[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)h(t)=M(t)﹣m(t)的值域?yàn)?/span>

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量P萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用x萬(wàn)元滿足P= (其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本6(P+ )萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+ )元/件.
          (1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
          (2)促銷費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)a≠b,解關(guān)于x的不等式a2xb2(1-x)≥[axb(1-x)]2

          【答案】{x|0≤x≤1}.

          【解析】

          將原不等式化簡(jiǎn)為(ab)2(x2x) ≤0,由條件得到系數(shù)(ab)2>0,直接解出不等式x2x≤0即可.

          解:將原不等式化為

          (a2b2)x+b2≥(ab)2x2+2(a-b)bxb2,

          移項(xiàng),整理后得 (ab)2(x2x) ≤0,…

          ab (ab)2>0,

          x2x≤0,

          x(x-1) ≤0.

          解此不等式,得解集 {x|0≤x≤1}.

          【點(diǎn)睛】

          本小題主要考查不等式基本知識(shí),不等式的解法;解題時(shí)要注意公式的靈活運(yùn)用.對(duì)于含參的二次不等式問(wèn)題,先判斷二次項(xiàng)系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進(jìn)行分解,再比較兩根大小,結(jié)合圖像得到不等式的解集.

          型】解答
          結(jié)束】
          19

          【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,且的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng)公式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】雙曲線x2 =1(b>0)的左、右焦點(diǎn)分別為F1、F2 , 直線l過(guò)F2且與雙曲線交于A、B兩點(diǎn).
          (1)若l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
          (2)設(shè)b= ,若l的斜率存在,M為AB的中點(diǎn),且 =0,求l的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】教育部記錄了某省20082017年十年間每年自主招生錄取的人數(shù)為方便計(jì)算,2008年編號(hào)為1,2009年編號(hào)為2,2017年編號(hào)為10,以此類推數(shù)據(jù)如下:

          年份編號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          人數(shù)

          3

          5

          8

          11

          13

          14

          17

          22

          30

          31

          根據(jù)前5年的數(shù)據(jù),利用最小二乘法求出y關(guān)于x的回歸方程,并計(jì)算第8年的估計(jì)值和實(shí)際值之間的差的絕對(duì)值;

          根據(jù)所得到的回歸方程預(yù)測(cè)2018年該省自主招生錄取的人數(shù).

          其中,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.

          (1)求a,b,c,d的值;

          (2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線C:y2=4x的焦點(diǎn)為F,斜率為k的直線l與拋物線C交于M,N兩點(diǎn),若線段MN的垂直平分線與x軸交點(diǎn)的橫坐標(biāo)為a(a>0),n=|MF|+|NF|,則2a﹣n等于(
          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若定義在R上的函數(shù)對(duì)任意的,都有成立,且當(dāng)時(shí),.

          (1)求證:R上的增函數(shù);

          (2)若,解不等式

          查看答案和解析>>

          同步練習(xí)冊(cè)答案