【題目】如圖,橢圓經(jīng)過點
,離心率
,直線
的方程為
.
求橢圓
的方程;
是經(jīng)過右焦點
的任一弦(不經(jīng)過點
),設(shè)直線
與直線
相交于點
,記
,
,
的斜率為
,
,
.問:是否存在常數(shù)
,使得
?若存在,求
的值;若不存在,說明理由.
【答案】(Ⅰ) ;(Ⅱ)存在常數(shù)
符合題意.
【解析】試題分析:(1)根據(jù)離心率得a,b,c三者關(guān)系,再將P點坐標代入橢圓方程,解得,
.(2)先根據(jù)兩點斜率公式化簡
,以及
,再利用直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達定理化簡
,最后作商得
的值
試題解析: 由
在橢圓上得,
①
依題設(shè)知,則
②
②帶入①解得,
,
.
故橢圓的方程為
.
由題意可設(shè)
的斜率為
,
則直線的方程為
③
代入橢圓方程并整理,得
,
設(shè),
,則有
,
④
在方程③中令得,
的坐標為
.
從而,
,
.
注意到,
,
共線,則有
,即有
.
所以⑤
④代入⑤得,
又,所以
,故存在常數(shù)
符合題意.
科目:高中數(shù)學 來源: 題型:
【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入
(元)之間有如下的對應數(shù)據(jù):
外賣份數(shù) | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式,
;
②參考數(shù)據(jù): ,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入
(元)之間有如下的對應數(shù)據(jù):
外賣份數(shù) | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式,
;
②參考數(shù)據(jù): ,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量
(單位:萬件)之間的關(guān)系如表:
1 | 2 | 3 | 4 | |
12 | 28 | 42 | 56 |
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點圖擬合與
的回歸模型,并用相關(guān)系數(shù)甲乙說明;
(Ⅲ)建立關(guān)于
的回歸方程,預測第5年的銷售量約為多少?.
附注:參考數(shù)據(jù): ,
,
.
參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大小;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為
(
為參數(shù)),以原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
寫出曲線
的極坐標的方程以及曲線
的直角坐標方程;
若過點
(極坐標)且傾斜角為
的直線
與曲線
交于
,
兩點,弦
的中點為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】阿海準備購買“海馬”牌一輛小汽車,其中購車費用12.8萬元,每年的保險費、汽油費約為0.95萬元,年維修、保養(yǎng)費第一年是0.1萬元,以后逐年遞增0.1萬元.請你幫阿海計算一下這種汽車使用多少年,它的年平均費用最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解高二年級學生對教師教學的意見,打算從高二年級883名學生中抽取80名進行座談,若采用下面的方法選。合扔煤唵坞S機抽樣從883人中剔除3人,剩下880人再按系統(tǒng)抽樣的方法進行,則每人入選的概率是( )
A.
B.
C.
D.無法確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),關(guān)于實數(shù)
的不等式
的解集為
.
(1)當時,解關(guān)于
的不等式:
;
(2)是否存在實數(shù),使得關(guān)于
的函數(shù)
(
)的最小值為
?若存在,求實數(shù)
的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com