【題目】如圖,已知拋物線
,直線
與拋物線
相交于
兩點,且當(dāng)傾斜角為
的直線
經(jīng)過拋物線
的焦點
時,有
.
(1)求拋物線的方程;
(2)已知圓,是否存在傾斜角不為
的直線
,使得線段
被圓
截成三等分?若存在,求出直線
的方程;若不存在,請說明理由.
【答案】(1);(2)
.
【解析】試題分析:(I)聯(lián)立方程組,利用根與系數(shù)的關(guān)系和拋物線的性質(zhì)列方程解出p;
(II)設(shè)直線l方程為,與拋物線方程聯(lián)立,求出AB的中點坐標(biāo),利用垂徑定理列方程得出m,b的關(guān)系,利用弦長公式計算|AB|,|CD|,根據(jù)|AB|=3|CD|列方程求出m得出直線l的方程.
試題解析:
(1)當(dāng)傾斜角為的直線
經(jīng)過拋物線
的焦點
時,直線
的方程為
,
∵聯(lián)立方程組,即
,
∴,即
,∴拋物線
的方程是
;
(2)假設(shè)存在直線,使得線段
被圓
截成三等分,令直線
交圓
為
,設(shè)直線
的方程為
,
,由題意知:線段
與線段
的中點重合且有
,聯(lián)立方程組
,即
,
∴,
,
,
∴線段中點的坐標(biāo)為
,即線段
的中點為
,
∴,即
,
又∵,
,
∴,即
,∴
,
,
故直線的方程為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一期間,某商場決定從種服裝、
種家電、
種日用品中,選出
種商品進(jìn)行促銷活動.
(1)試求選出種商品中至少有一種是家電的概率;
(2)商場對選出的某商品采用抽獎方式進(jìn)行促銷,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,規(guī)定購買該商品的顧客有
次抽獎的機(jī)會: 若中一次獎,則獲得數(shù)額為
元的獎金;若中兩次獎,則獲得數(shù)額為
元的獎金;若中三次獎,則共獲得數(shù)額為
元的獎金. 假設(shè)顧客每次抽獎中獎的概率都是
,請問: 商場將獎金數(shù)額
最高定為多少元,才能使促銷方案對商場有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增,求實數(shù)
的值;
(2)是否存在實數(shù),使得
在
上單調(diào)遞減,若存在,試求
的取值范圍;若不存在,請說明理由;
(3)若,當(dāng)
時不等式
有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點到坐標(biāo)原點的距離和它到直線
的距離之比是一個常數(shù)
.
(1)求點的軌跡;
(2)若時得到的曲線是
,將曲線
向左平移一個單位長度后得到曲線
,過點
的直線
與曲線
交于不同的兩點
,過
的直線
分別交曲線
于點
,設(shè)
,
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).
(1)求圖中的值;
(2)估計該次考試的平均分(同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);
(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān)?
(參考公式: ,其中
)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,以極點
為坐標(biāo)原點,極軸為
的正半軸建立平面直角坐標(biāo)系
.
(1)求和
的參數(shù)方程;
(2)已知射線,將
逆時針旋轉(zhuǎn)
得到
,且
與
交于
兩點,
與
交于
兩點,求
取得最大值時點
的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)( )
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個等于0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|
(1)若函數(shù)y=f(x)+x在R上是增函數(shù),求實數(shù)a的取值范圍;
(2)若對任意x∈[1,2]時,函數(shù)f(x)的圖像恒在y=1圖像的下方,求實數(shù)a的取值范圍;
(3)設(shè)a≥2時,求f(x)在區(qū)間[2,4]內(nèi)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com