日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:  (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
          (I)求橢圓C的方程;
          (II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.

          (I)  (II)

          解析試題分析:(I)由已知可得b=c=1,再由a2=b2+c2,解出a即可.(II)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-2),代入橢圓中,得到關(guān)于x的一元二次方程,由判別式求出k的取值范圍,和用k表示的x1+x2,x1x2的表達(dá)式,然后分以O(shè)或A或B為直角頂點(diǎn),根據(jù)向量垂直的坐標(biāo)表示的充要條件列出關(guān)于k的方程,求解即可.
          試題解析:(Ⅰ)  
          所以橢圓方程為 
          (Ⅱ)由已知直線AB的斜率存在,設(shè)AB的方程為: 
             得 
          ,得:,即 
          設(shè) 
          (1)若為直角頂點(diǎn),則 ,即 ,
          ,所以上式可整理得,
          ,解,得,滿足 
          (2)若為直角頂點(diǎn),不妨設(shè)以為直角頂點(diǎn),,則滿足:
          ,解得,代入橢圓方程,整理得, 
          解得,,滿足 
          時(shí),三角形為直角三角形  
          考點(diǎn):1.橢圓方程及其性質(zhì);2.直線與橢圓的相交的條件;3.向量垂直的充要條件.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
          (Ⅰ)求C的方程;
          (Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時(shí),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)是橢圓上一點(diǎn),分別為的左右焦點(diǎn),,的面積為.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè),過點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線經(jīng)過點(diǎn),且雙曲線的漸近線與圓相切.
          (1)求雙曲線的方程;
          (2)設(shè)是雙曲線的右焦點(diǎn),是雙曲線的右支上的任意一點(diǎn),試判斷以為直徑的圓與以雙曲線實(shí)軸為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
          (Ⅰ)求曲線的方程;
          (Ⅱ)設(shè)軸上的兩點(diǎn),過點(diǎn)分別作軸的垂線,與曲線分別交于點(diǎn),直線與x軸交于點(diǎn),這樣就稱確定了.同樣,可由確定了.現(xiàn)已知,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn)

          (1)求橢圓的方程;
          (2)求的最小值,并求此時(shí)圓的方程;
          (3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn),為坐標(biāo)原點(diǎn),
          求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且.

          (Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓+=1上;
          (Ⅱ)若M、N為橢圓上的兩點(diǎn),且直線GM與直線GN的斜率之積為,求證:直線MN過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知分別是橢圓: 的左、右焦點(diǎn),點(diǎn)在直線上,線段的垂直平分線經(jīng)過點(diǎn).直線與橢圓交于不同的兩點(diǎn)、,且橢圓上存在點(diǎn),使,其中是坐標(biāo)原點(diǎn),是實(shí)數(shù).
          (Ⅰ)求的取值范圍;
          (Ⅱ)當(dāng)取何值時(shí),的面積最大?最大面積等于多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長為的正方形.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案