日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=xlnx-x2.
          (1)當(dāng)a=1時,函數(shù)y=f(x)有幾個極值點?
          (2)是否存在實數(shù)a,使函數(shù)f(x)=xlnx-x2有兩個極值?若存在,求實數(shù)a的取值范圍;若不存在,請說明理由.

          (1)0個極值點   (2)(0,1)

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個極值點。
          (1)求a的值;
          (2)求曲線y=f(x)在點(1,f(1))處的切線方程

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),其中.
          (1)討論在其定義域上的單調(diào)性;
          (2)當(dāng)時,求取得最大值和最小值時的的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知f(x)是定義在集合M上的函數(shù).若區(qū)間D⊆M,且對任意x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
          (1)判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
          (2)若函數(shù)g(x)=在區(qū)間[3,10]上封閉,求實數(shù)a的取值范圍;
          (3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z,且a≠b)上封閉,求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)f(x)=ax-,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
          (1)求f(x)的解析式;
          (2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若,求曲線在點處的切線方程;
          (2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
          (3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)當(dāng)時,求函數(shù)的極值;
          (2)若對,有成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
          (2)若函數(shù)上的最小值為3,求實數(shù)的值.

          查看答案和解析>>

          同步練習(xí)冊答案