日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在xoy平面上有一系列點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個(gè)正整數(shù)n,以點(diǎn)Pn為圓心的⊙Pn與x軸及射線y=
          3
          x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
          (1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)數(shù)列{an}的各項(xiàng)為正,且滿足an
          xnan-1
          xn+an-1
          a1
          =1,
          求證:a1x1+a2x2+a3x3+…+anxn
          5
          4
          -
          1
          3n-1
          ,(n≥2)
          (3)對于(2)中的數(shù)列{an},當(dāng)n>1時(shí),求證:(1-an)2[
          a
          2
          2
          (1-
          a
          2
          2
          )
          2
          +
          a
          3
          3
          (1-
          a
          3
          3
          )
          2
          +…+
          a
          n
          n
          (1-
          a
          n
          n
          )
          2
          ]>
          4
          5
          -
          1
          1+an+
          a
          2
          n
          +…+
          a
          n
          n
          分析:(1)由圓Pn與P(n+1)相切,且P(n+1)與x軸相切可知Rn=Yn,R(n+1)=Y(n+1),且兩圓心間的距離就等于兩半徑之和進(jìn)而得到
          (xn-xn+1)2+(yn-yn+1)2
          =
          4
          3
          (xn-xn+1)2
          =
          3
          3
          (xn+xn+1)
          ,整理得證.
          (2)由an
          xnan-1
          xn+an-1
          ,可證an
          2
          3n-1
          ,進(jìn)而得Sn=a1x1+a2x2+a3x3+…+anxn≤1×1+
          2
          8
          ×
          1
          3
          +
          2
          26
          ×
          1
          9
          +…+
          2
          3n-1
          ×
          1
          3n-1
          從而可證
          (3)先證a1>a2>…>an>0,再令:bk=
          (1-an)2
          a
          k
          k
          (1-
          a
          k
          k
          )
          2
          ,從而bk=
          (1-an)2
          a
          k
          k
          (1-
          a
          k
          k
          )
          2
          (1-ak)2
          a
          k
          k
          (1-
          a
          k
          k
          )
          2
          =
          a
          k
          k
          (1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          )
          2
          利于放縮法可證.
          解答:解:(1)點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…必在射線y=
          3
          3
          x,(x≥0)
          ,
          yn=
          xn
          3
          為⊙Pn的半徑,
          ∵⊙Pn與⊙Pn+1外切,
          (xn-xn+1)2+(yn-yn+1)2
          =
          4
          3
          (xn-xn+1)2
          =
          3
          3
          (xn+xn+1)
          ①…(3分)
          化簡①式得:3xn+12-10xnxn+1+3xn2=0,解得:xn+1=3xnxn+1=
          1
          3
          xn
          ,
          ∵xn+1<xn,∴xn+1=
          1
          3
          xn
          ,∴數(shù)列{xn}是等比數(shù)列,∵x1=1,則xn=(
          1
          3
          )n-1
          …(5分)
          (2)an
          xnan-1
          xn+an-1
          ,而an>0,xn>0,
          1
          an
          1
          xn
          +
          1
          an-1
          1
          an
          -
          1
          an-1
          1
          xn
          ,∴
          1
          an
          -
          1
          a1
          1
          x2
          +
          1
          x3
          +…+
          1
          xn
          ,∵a1=1,
          1
          an
          ≥1+
          1
          x2
          +
          1
          x3
          +…+
          1
          xn
          =1+3+32+…+3n-1=
          3n-1
          2

          an
          2
          3n-1
          …(8分)
          設(shè)Sn=a1x1+a2x2+a3x3+…+anxn,Tn=
          5
          4
          -
          1
          3n-1

          Sn=a1x1+a2x2+a3x3+…+anxn≤1×1+
          2
          8
          ×
          1
          3
          +
          2
          26
          ×
          1
          9
          +…+
          2
          3n-1
          ×
          1
          3n-1

          當(dāng)n=2時(shí),S2≤1+
          1
          12
          =
          13
          12
          T2=
          5
          4
          -
          1
          32-1
          =
          9
          8
          ,必有S2<T2
          當(dāng)n>2時(shí),
          anxn
          2
          (3n-1)3n-1
          2
          (3n-1)(3n-1-1)
          2•3n-1
          (3n-1)(3n-1-1)
          =
          1
          3n-1-1
          -
          1
          3n-1

          Sn<1+
          1
          12
          +(
          1
          32-1
          -
          1
          33-1
          )+(
          1
          33-1
          -
          1
          34-1
          )+…+(
          1
          3n-1-1
          -
          1
          3n-1
          )
          =1+
          1
          12
          +
          1
          8
          -
          1
          3n-1
          =
          29
          24
          -
          1
          3n-1
          5
          4
          -
          1
          3n-1
          …(13分)
          (3)∵
          1
          an
          -
          1
          an-1
          1
          xn
          >0∴anan-1
          ,∴1=a1>a2>…>an>0
          令:bk=
          (1-an)2
          a
          k
          k
          (1-
          a
          k
          k
          )
          2
          ,則bk=
          (1-an)2
          a
          k
          k
          (1-
          a
          k
          k
          )
          2
          (1-ak)2
          a
          k
          k
          (1-
          a
          k
          k
          )
          2
          =
          a
          k
          k
          (1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          )
          2
          a
          k
          k
          (1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          )(1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          +
          a
          k
          k
          )
          =
          1
          1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          -
          1
          1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          +
          a
          k
          k
          1
          1+ak+
          a
          2
          k
          +…
          a
          k-1
          k
          -
          1
          1+ak+1+
          a
          2
          k+1
          +…
          a
          k-1
          k+1
          +
          a
          k
          k+1
          =
          1
          k
          i=1
          a
          i-1
          k
          -
          1
          k+1
          i=1
          a
          i-1
          k+1
          …(18分)
          ∵0<a2
          2
          32-1
          =
          1
          4
          (1-an)2[
          a
          2
          2
          (1-
          a
          2
          2
          )
          2
          +
          a
          3
          3
          (1-
          a
          3
          3
          )
          2
          +…+
          a
          n
          n
          (1-
          a
          n
          n
          )
          2
          ]=
          n
          k=2
          bk
          n
          k=2
          (
          1
          k
          i=1
          a
          i-1
          k
          -
          1
          k+1
          i=1
          a
          i-1
          k+1
          )
          =
          1
          1+a2
          -
          1
          1+an+
          a
          2
          n
          +…+
          a
          n
          n
          4
          5
          -
          1
          1+an+
          a
          2
          n
          +…+
          a
          n
          n
          …20分.
          點(diǎn)評:本題以相切為素材,考查數(shù)列與解析幾何的綜合,考查數(shù)列與不等式,技巧性強(qiáng),難度大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在xoy平面上有一系列點(diǎn)P1(x1,y1),P2(x2,y2)…,Pn(xn,yn),…,(n∈N*),點(diǎn)Pn在函數(shù)y=x2(x≥0)的圖象上,以點(diǎn)Pn為圓心的圓Pn與x軸都相切,且圓Pn與圓Pn+1又彼此外切.若x1=1,且xn+1<xnx1=1.
          (I)求數(shù)列{xn}的通項(xiàng)公式;
          (II)設(shè)圓Pn的面積為SnTn=
          S1
          +
          S2
          +…+
          Sn
          ,求證:Tn
          3
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在xoy平面上有一系列點(diǎn)P1(x1,y1)、P2(x2,y2)┉Pn(xn,yn),對于每個(gè)自然數(shù)n,點(diǎn)Pn(xn,yn)位于函數(shù)y=x2(x≥0)圖象上,以點(diǎn)Pn為圓心的⊙Pn與x軸相切,又與⊙Pn+1外切,若x1=1,xn+1<xn(n∈N+),則數(shù)列{xn}的通項(xiàng)公式xn=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在xOy平面上有一系列點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個(gè)自然數(shù)n,點(diǎn)Pn位于函數(shù)y=x2(x≥0)的圖象上,以點(diǎn)Pn為圓心的⊙Pn與x軸都相切,且⊙Pn與⊙Pn+1又彼此外切.若x1=1且xn+1<xn?(n∈N*).

          (1)求證:數(shù)列{1xn}是等差數(shù)列;

          (2)設(shè)⊙Pn的面積為Sn,Tn=+…+,求證:Tn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年浙江省溫州市搖籃杯高一數(shù)學(xué)競賽試卷(解析版) 題型:解答題

          在xoy平面上有一系列點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個(gè)正整數(shù)n,以點(diǎn)Pn為圓心的⊙Pn與x軸及射線y=x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
          (1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)數(shù)列{an}的各項(xiàng)為正,且滿足an=1,
          求證:a1x1+a2x2+a3x3+…+anxn,(n≥2)
          (3)對于(2)中的數(shù)列{an},當(dāng)n>1時(shí),求證:

          查看答案和解析>>

          同步練習(xí)冊答案