日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,棱長為a的正方體,N是棱的中點(diǎn);

          1)求直線AN與平面所成角的大小;

          2)求到平面ANC的距離.

          【答案】1;(2a;

          【解析】

          1)以為原點(diǎn),建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量,利用向量的夾角公式,得到與法向量的夾角,從而得到答案;(2)求出平面的一個(gè)法向量,到平面的距離等于在此法向量方向上投影的絕對值,從而得到答案.

          1)以為坐標(biāo)原點(diǎn),軸,軸,軸,

          建立空間直角坐標(biāo)系,如圖所示,

          ,,,,

          因?yàn)?/span>平面平面,

          所以,

          因?yàn)檎叫?/span>,所以

          平面,

          所以平面,

          為平面的一個(gè)法向量,,

          設(shè)直線與平面所成的角為,

          ,

          所以直線與平面所成的角為.

          2)設(shè)平面的一個(gè)法向量,

          ,所以,

          ,

          因?yàn)?/span>

          所以到平面的距離.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 是邊長為的正方形平面平面, , , .

          1求證:面;

          2求直線與平面所成角的正弦值;

          3)在線段上是否存在點(diǎn),使得二面角的大小為?若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),,其中m是不等于零的常數(shù),

          (1)時(shí),直接寫出的值域;

          (2)求的單調(diào)遞增區(qū)間;

          (3)已知函數(shù)(),定義:(),().其中,表示函數(shù)D上的最小值,表示函數(shù)D上的最大值.例如:,,則,,,.當(dāng)時(shí),設(shè),不等式恒成立,求t,n的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,取同離心率的兩個(gè)橢圓成軸對稱內(nèi)外嵌套得一個(gè)標(biāo)志,為美觀考慮,要求圖中標(biāo)記的①、②、③)三個(gè)區(qū)域面積彼此相等.(已知:橢圓面積為圓周率與長半軸、短半軸長度之積,即橢圓面積為

          (1)求橢圓的離心率的值;

          2)已知外橢圓長軸長為6,用直角角尺兩條直角邊內(nèi)邊緣與外橢圓相切,移動(dòng)角尺繞外橢圓一周,得到由點(diǎn)M生成的軌跡將兩橢圓圍起來,整個(gè)標(biāo)志完成.請你建立合適的坐標(biāo)系,求出點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若兩個(gè)函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個(gè)函數(shù)為“同形”函數(shù),給出下列四個(gè)函數(shù):,,,則“同形”函數(shù)是(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,斜三棱柱中,平面平面,為棱的中點(diǎn),點(diǎn).若60°

          (Ⅰ)證明:直線平面;

          (Ⅱ)證明:平面平面

          (Ⅲ)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心為,一個(gè)方向向量為的直線只有一個(gè)公共點(diǎn)

          1)若且點(diǎn)在第二象限,求點(diǎn)的坐標(biāo);

          2)若經(jīng)過的直線垂直,求證:點(diǎn)到直線的距離

          3)若點(diǎn)、在橢圓上,記直線的斜率為,且為直線的一個(gè)法向量,且的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的周期為,圖象的一個(gè)對稱中心為.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象.

          (1)求函數(shù)的解析式.

          (2)定義:當(dāng)函數(shù)取得最值時(shí),函數(shù)圖象上對應(yīng)的點(diǎn)稱為函數(shù)的最值點(diǎn),如果函數(shù)的圖象上至少有一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn)在圓的內(nèi)部或圓周上,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,的中點(diǎn).

          (Ⅰ)求證:PA//平面BEF;

          (Ⅱ)若PCAB所成角為,求的長;

          (Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

          查看答案和解析>>

          同步練習(xí)冊答案