日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐P-ABCD中,ABCD為菱形,PA⊥平面ABCD,∠BCD=60°,BC=1,E為CD的中點(diǎn),PC與平面ABCD成角60°

          (1)求證:平面EPB⊥平面PBA;

          (2)求二面角B-PD-A的大小.

          答案:
          解析:

            解:(1),

            

            

            ,又

            面PAB,面PAB,

              4分

            (2)過B點(diǎn)作BFAD于F,過FFMPD于M,聯(lián)結(jié)BM

            BFAD

            BFPABF面PAD

            BM為面PAD的斜線,MF為BM在面PAD的射影,BMPD

            BMF為二面角B-PD-A的平面角  8分

            PC與面ABCD成角,PCA=PA=3

            BFMF

            所以二面角B-PD-A為  12分


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,CE∥AB.
          (Ⅰ)求證:CE⊥平面PAD;
          (Ⅱ)若PA=AB=1,AD=3,且CD與平面PAD所成的角為45°,求點(diǎn)D到平面PCE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是正方形,AC∩BD=O,PA⊥底面ABCD,OE⊥PC于E.
          (1)求證:PC⊥平面BDE;
          (2)設(shè)PA=AB=2,求二面角B-PC-D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點(diǎn)F是PB中點(diǎn).
          (Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點(diǎn)E,F(xiàn)分別是AB和PC的中點(diǎn).
          (1)求證:EF∥平面PAD;
          (2)若CD=2PD=2AD=2,四棱錐P-ABCD外接球的表面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
          12
          CD=2,PA=2,M,E,F(xiàn)分別是PA,PC,PD的中點(diǎn).
          (1)證明:EF∥平面PAB;
          (2)證明:PD⊥平面ABEF;
          (3)求直線ME與平面ABEF所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案