日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在北上廣深等十余大中城市,一款叫“一度用車”的共享汽車給市民們提供了一種新型的出行方式.2020年,懷化也將出現(xiàn)共享汽車,用戶每次租車時(shí)按行駛里程(1元/公里)加用車時(shí)間(0.1元/分鐘)收費(fèi),李先生家離上班地點(diǎn)10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開(kāi)車花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開(kāi)車花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:

          時(shí)間(分鐘)

          次數(shù)

          8

          14

          8

          8

          2

          以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開(kāi)車花費(fèi)的時(shí)間視為用車時(shí)間范圍為分鐘.

          (Ⅰ)若李先生上、下班時(shí)租用一次共享汽車路上開(kāi)車不超過(guò)45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望;

          (Ⅱ)若李先生每天上下班使用共享汽車2次,一個(gè)月(以20天計(jì)算)平均用車費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

          【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)542元.

          【解析】試題分析:(1)首先求為最優(yōu)選擇的概率是,故ξ的值可能為0,1,2,3,4,且ξB(4,,進(jìn)而求得分布列和期望值;(2)根據(jù)題意得到每次花的平均時(shí)間為35.5,根據(jù)花的費(fèi)用為10+35.5*0.1得到費(fèi)用.

          解析:

          (Ⅰ)李先生一次租用共享汽車,為最優(yōu)選擇的概率

          依題意ξ的值可能為0,1,2,3,4,且ξB(4,),

          ,

          , ,

          , ∴ξ的分布列為:

          ξ

          0

          1

          2

          3

          4

          P

          (或).

          (Ⅱ)每次用車路上平均花的時(shí)間

          (分鐘)

          每次租車的費(fèi)用約為10+35.5×0.1=13.55元.

          一個(gè)月的平均用車費(fèi)用約為542元.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.

          (1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?

          愿意

          不愿意

          總計(jì)

          男生

          女生

          總計(jì)

          (2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再?gòu)闹谐槿?人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.

          參考數(shù)據(jù)及公式:

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)在區(qū)間上的單調(diào)性;

          (2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值

          由散點(diǎn)圖知,建立關(guān)于的回歸方程是合理的,,經(jīng)計(jì)算得如下數(shù)據(jù)

          10.15

          109.94

          0.16

          -2.10

          0.21

          21.22

          (1)根據(jù)以上信息,建立關(guān)于的回歸方程

          (2)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少

          對(duì)于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】,,若以為左右焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn).

          (1)求的標(biāo)準(zhǔn)方程;

          (2)設(shè)過(guò)右焦點(diǎn)且斜率為的動(dòng)直線與相交于兩點(diǎn)探究在軸上是否存在定點(diǎn),使得為定值?若存在試求出定值和點(diǎn)的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)若的圖像在處的切線過(guò)點(diǎn),求的值并討論上的單調(diào)增區(qū)間;

          (Ⅱ)定義:若直線與曲線、都相切,則我們稱直線為曲線的公切線.若曲線存在公切線,試求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

          (1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

          (2)若當(dāng)時(shí), 恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)求證:函數(shù)是偶函數(shù);

          (2)當(dāng)求函數(shù)上的最大值和最小值;

          (3)若對(duì)于任意的實(shí)數(shù)恒有求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

          (1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;

          (2)當(dāng)時(shí),求函數(shù)的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案