日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn),以為直徑作圓,當(dāng)直線的斜率為1時(shí),.

          (1)求拋物線的標(biāo)準(zhǔn)方程;

          (2)過焦點(diǎn)的垂線與圓的一個(gè)交點(diǎn)為,交拋物線于,(點(diǎn)在點(diǎn),之間),記的面積為,求的最小值.

          【答案】(1)(2)

          【解析】

          1)求得直線的方程,聯(lián)立拋物線方程,解得的坐標(biāo),由兩點(diǎn)的距離公式可得,進(jìn)而得到所求拋物線方程;

          2)求得,設(shè),,,,,且,由向量垂直的坐標(biāo)表示可得,由三角形的勾股定理和三角形的面積公式可得,設(shè),聯(lián)立拋物線方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式可得,再由兩直線垂直的條件,以及構(gòu)造函數(shù)法,求得導(dǎo)數(shù)和單調(diào)性,計(jì)算可得所求最小值.

          1)當(dāng)直線的斜率為1時(shí),

          可得直線的方程為,聯(lián)立拋物線方程

          解得,即,即,

          拋物線的方程為;

          2)由(1)可得,

          設(shè),,,且,

          由題意可得,即,

          ,即,

          整理可得,

          ,

          ,即

          的斜率存在且不為0,,聯(lián)立拋物線方程可得

          可得,,則

          ,

          ,可得,即,可得,

          ,

          可令,,

          顯然遞增,且,

          當(dāng)時(shí),時(shí),

          可得遞減,在遞增,

          可得時(shí),取得最小值23

          即求的最小值為23

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)訄A經(jīng)過點(diǎn),且和直線相切.

          (Ⅰ)求該動(dòng)圓圓心的軌跡的方程;

          (Ⅱ)已知點(diǎn),若斜率為1的直線與線段相交(不經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)),且與曲線交于兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三棱錐內(nèi)接于球O,平面ABC為等邊三角形,且邊長(zhǎng),球的表面積為,則直線PC與平面PAB所成的角的正弦值為

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)若在函數(shù)的定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;

          (Ⅱ)當(dāng)時(shí),若曲線在點(diǎn)處的切線與曲線有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的值或取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)命題函數(shù)的值域?yàn)?/span>;命題,不等式恒成立,如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的圖象在點(diǎn)處的切線方程;

          (2)若上有解,求的取值范圍;

          (3)設(shè)是函數(shù)的導(dǎo)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)的零點(diǎn)為,則點(diǎn)恰好就是該函數(shù)的對(duì)稱中心.試求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

          2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;

          3)對(duì)任意,恒有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形中,,,為邊的中點(diǎn).將△沿翻折,得到四棱錐.設(shè)線段的中點(diǎn)為,在翻折過程中,有下列三個(gè)命題:

          總有平面

          三棱錐體積的最大值為;

          存在某個(gè)位置,使所成的角為

          其中正確的命題是____.(寫出所有正確命題的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)滿足,且當(dāng)時(shí),成立,若,,,則ab,c的大小關(guān)系是()

          A. aB. C. D. c

          查看答案和解析>>

          同步練習(xí)冊(cè)答案