日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 . (Ⅰ)求f(x)的解析式;
          (Ⅱ)當(dāng) ,求f(x)的值域.

          【答案】解:(Ⅰ)由最低點(diǎn)為 得A=2. 由x軸上相鄰的兩個(gè)交點(diǎn)之間的距離為 =
          即T=π,
          由點(diǎn) 在圖象上的

          ,∴
          (Ⅱ)∵ ,∴
          當(dāng) = ,即 時(shí),f(x)取得最大值2;當(dāng)
          時(shí),f(x)取得最小值﹣1,
          故f(x)的值域?yàn)閇﹣1,2]
          【解析】(Ⅰ)根據(jù)最低點(diǎn)M可求得A;由x軸上相鄰的兩個(gè)交點(diǎn)之間的距離可求得ω;進(jìn)而把點(diǎn)M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函數(shù)的解析式.(Ⅱ)根據(jù)x的范圍進(jìn)而可確定當(dāng) 的范圍,根據(jù)正弦函數(shù)的單調(diào)性可求得函數(shù)的最大值和最小值.確定函數(shù)的值域.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N*
          (1)求通項(xiàng)公式an;
          (2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀下列一段材料,然后解答問(wèn)題:對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示“不超過(guò)x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù)時(shí),[x]是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),這個(gè)函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù).如[﹣2]=﹣2,[﹣1.5]=﹣2,[2.5]=2.求[log2]+[log2]+[log2]+[log21]+[log22]+[log23]+[log24]的值為(  )
          A.-1
          B.-2
          C.0
          D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校有學(xué)生2000人,其中高二學(xué)生630人,高三學(xué)生720人.為了解學(xué)生的身體素質(zhì)情況,采用按年級(jí)分層抽樣的方法,從該校學(xué)生中抽取一個(gè)200人的樣本.則樣本中高一學(xué)生的人數(shù)為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓C:(x﹣1)2+(y﹣2)2=4.
          (1)求直線2x﹣y+4=0被圓C所截得的弦長(zhǎng);
          (2)求過(guò)點(diǎn)M(3,1)的圓C的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1所示,在邊長(zhǎng)為24的正方形中,點(diǎn)在邊上,且 ,分別交于點(diǎn),分別交于點(diǎn)將該正方形沿折疊,使得重合,構(gòu)成如圖2所示的三棱柱.

          (1)求證: 平面;

          (2)求多面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1= AB,E是線段CC1的中點(diǎn),連接AE,B1E,AB1 , B1C,BC1 , 得到的圖形如圖所示. (Ⅰ)證明BC1⊥平面AB1C;
          (Ⅱ)求二面角E﹣AB1﹣C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知
          (1)求函數(shù)f(x)的最小正周期和最大值,并求出x為何值時(shí),f(x)取得最大值;
          (2)求函數(shù)f(x)在[﹣2π,2π]上的單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知首項(xiàng)都是1的兩個(gè)數(shù)列{an},{bn} 滿足anbn+1﹣an+1bn﹣2an+1an=0.
          (1)令 ,求證數(shù)列{cn}為等差數(shù)列;
          (2)若 ,求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案