日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知直二面角α-PQ-β,A∈PQ,B∈α,C∈β,∠BAP=45°,直線CA和平面α所成的角為30°.
          (Ⅰ)證明BC⊥PQ;
          (Ⅱ)求二面角B-AC-P的大。
          分析:(1)在平面β內(nèi)過點C作CO⊥PQ于點O,連接OB,欲證PQ⊥BC,即證PQ⊥平面OBC,因BO⊥PQ.又CO⊥PQ且BO∩CO=O,根據(jù)線面垂直的判定定理可證PQ⊥平面OBC;
          (2)過點O作OH⊥AC于點H,連接BH,由三垂線定理知,BH⊥AC,故∠BHO是二面角B-AC-P的平面角,然后在Rt△BOH中解出此角即可.
          解答:精英家教網(wǎng)解:(I)在平面β內(nèi)過點C作CO⊥PQ于點O,連接OB.
          因為α⊥β,α∩β=PQ,所以CO⊥α,
          又因為CA=CB,所以O(shè)A=OB.
          而∠BAO=45°,所以∠ABO=45°,∠AOB=90°.從而BO⊥PQ.又CO⊥PQ,
          所以PQ⊥平面OBC.因為BC?平面OBC,故PQ⊥BC.
          (II)由(I)知,BO⊥PQ,又α⊥β,α∩β=PQ,BO?α,所以BO⊥β.
          過點O作OH⊥AC于點H,連接BH,由三垂線定理知,BH⊥AC.
          故∠BHO是二面角B-AC-P的平面角.
          由(I)知,CO⊥α,所以∠CAO是CA和平面α所成的角,則∠CAO=30°,
          不妨設(shè)AC=2,則AO=
          3
          ,OH=AOsin30°=
          3
          2

          在Rt△OAB中,∠ABO=∠BAO=45°,所以BO=AO=
          3
          ,
          于是在Rt△BOH中,tan∠BHO=
          BO
          OH
          =
          3
          3
          2
          =2

          故二面角B-AC-P的大小為arctan2.
          點評:本題主要考查了平面與平面之間的位置關(guān)系,以及空間中直線與直線之間的位置關(guān)系,考查空間想象能力、運算能力和推理論證能力,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年湖南卷文)(14分)

          如圖,已知直二面角,直線CA和平面所成的角為.                  

             (Ⅰ)證明

             (Ⅱ)求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年湖南卷文)(14分)

          如圖,已知直二面角,直線CA和平面所成的角為.                  

             (Ⅰ)證明;

             (Ⅱ)求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖南省高考真題 題型:解答題

          如圖,已知直二面角α-PQ-β,A∈PQ,B∈α,C∈β,CA=CB,∠BAP=45°,直線CA和平面α所成的角為30°。
          (1)證明BC⊥PQ;
          (2)求二面角B-AC-P的大小。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007年湖南省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,已知直二面角α-PQ-β,A∈PQ,B∈α,C∈β,∠BAP=45°,直線CA和平面α所成的角為30°.
          (Ⅰ)證明BC⊥PQ;
          (Ⅱ)求二面角B-AC-P的大。

          查看答案和解析>>

          同步練習(xí)冊答案