【題目】下列說法正確的是( )
①從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣.
②某地氣象局預報:5月9日本地降水概率為,結果這天沒下雨,這表明天氣預報并不科學.
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好.
④在回歸直線方程中,當解釋變量
每增加1個單位時,預報變量
增加0.1個單位.
A.①②B.③④C.①③D.②④
【答案】B
【解析】
①由于間隔相同,這樣的抽樣是系統抽樣;
②降水概率為90%的含義是指降水的可能性為90%,但不一定降水;
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好,正確;
④在回歸直線方程0.1x+10中,回歸系數為0.1,利用回歸系數的意義可得結論.
解:①從勻速傳遞的產品生產流水線上,質檢員每10分鐘從某處抽取一件產品進行某項指標檢測,由于間隔相同,這樣的抽樣是系統抽樣,故①不正確;
②降水概率為90%的含義是指降水的可能性為90%,但不一定降水,故②不正確;
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好,正確;
④在回歸直線方程0.1x+10中,回歸系數為0.1,當解釋變量x每增加一個單位時,預報變量
增加0.1個單位,故④正確.
故選:B.
科目:高中數學 來源: 題型:
【題目】給出如下四個命題:①若“且
”為假命題,則
均為假命題;②命題“若
,則
”的否命題為“若
,則
”; ③“
,則
”的否定是“
,則
”;④在
中,“
”是“
”的充要條件.其中正確的命題的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著城市地鐵建設的持續(xù)推進,市民的出行也越來越便利.根據大數據統計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數關系:
,其中
.
(1)若平均每趟地鐵的載客人數不超過1500人,試求發(fā)車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上海地鐵四通八達,給市民出行帶來便利,已知某條線路運行時,地鐵的發(fā)車時間間隔(單位:分字)滿足:
,
,經測算,地鐵載客量
與發(fā)車時間間隔
滿足
,其中
.
(1)請你說明的實際意義;
(2)若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?并求最大凈收益.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知在平面直角坐標系中,圓
的參數方程為
(
為參數).以原點
為極點,
軸的非負半軸為極軸,取相同的單位長度建立極坐標系.
(I)求圓的普通方程及其極坐標方程;
(II)設直線的極坐標方程為
,射線
與圓
的交點為
,與直線
的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知在平面直角坐標系中,圓
的參數方程為
(
為參數).以原點
為極點,
軸的非負半軸為極軸,取相同的單位長度建立極坐標系.
(I)求圓的普通方程及其極坐標方程;
(II)設直線的極坐標方程為
,射線
與圓
的交點為
,與直線
的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某化工廠從今年一月起,若不改善生產環(huán)境,按生產現狀,每月收入為80萬元,同時將受到環(huán)保部門的處罰,第一個月罰4萬元,以后每月增加2萬元.如果從今年一月起投資500萬元添加回收凈化設備(改造設備時間不計),一方面可以改善環(huán)境,另一方面可以大大降低原料成本,據測算,添加回收凈化設備并投產后的前4個月中的累計生產凈收入g(n)是生產時間個月的二次函數
是常數
,且前3個月的累計生產凈收入可達309萬元,從第5個月開始,每個月的生產凈收入都與第4個月相同,同時,該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎勵120萬元.
(1)求前6個月的累計生產凈收入g(6)的值;
(2)問經過多少個月,投資開始見效,即投資改造后的純收入多于不改造的純收入.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com