日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)討論的單調(diào)性;

          (2)當(dāng)時,記在區(qū)間的最大值為,最小值為,求的取值范圍.

          【答案】(1)見詳解;(2) .

          【解析】

          (1)先求的導(dǎo)數(shù),再根據(jù)的范圍分情況討論函數(shù)單調(diào)性;(2) 討論的范圍,利用函數(shù)單調(diào)性進(jìn)行最大值和最小值的判斷,最終求得的取值范圍.

          (1)求導(dǎo)得.所以有

          當(dāng)時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增;

          當(dāng)時,區(qū)間上單調(diào)遞增;

          當(dāng)時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.

          (2)

          在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為.,故所以區(qū)間上最大值為.

          所以,設(shè)函數(shù),求導(dǎo)當(dāng)從而單調(diào)遞減.,所以.的取值范圍是.

          ,在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為,故所以區(qū)間上最大值為.

          所以,而,所以.的取值范圍是.

          綜上得的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A,B,且,為等邊三角形.

          1)求橢圓C的方程;

          2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點O的對稱點為N;過點Mx軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;

          3)已知是過點A的兩條互相垂直的直線,直線與圓相交于PQ兩點,直線與橢圓C交于另一點R,求面積最大值時,直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)和函數(shù),

          1)若為偶函數(shù),試判斷的奇偶性;

          2)若方程有兩個不等的實根,則

          ①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;

          ②若方程的兩實根為求使成立的的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 是奇函數(shù).

          1)求實數(shù)的值;

          2)判斷函數(shù)上的單調(diào)性,并給出證明;

          3)當(dāng)時,函數(shù)的值域是,求實數(shù)的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】第七屆世界軍人運動會于20191018日至20191027日在中國武漢舉行,第七屆世界軍人運動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運會之后我國舉辦的規(guī)模最大的國際體育盛會.來自109個國家的9300余名軍體健兒在江城武漢同場競技、增進(jìn)友誼.運動會共設(shè)置射擊、游泳、田徑、籃球等27個大項、329個小項.經(jīng)過激烈角逐,獎牌榜的前6名如下:

          某大學(xué)德語系同學(xué)利用分層抽樣的方式從德國獲獎選手中抽取了9名獲獎代表.

          1)請問這9名獲獎代表中獲金牌、銀牌、銅牌的人數(shù)分別是多少人?

          2)從這9人中隨機抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望;

          3)從這9人中隨機抽取3人,求已知這3人中有獲金牌運動員的前提下,這3人中恰好有1人為獲銅牌運動員的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】的內(nèi)切圓與三邊的切點分別為,已知,內(nèi)切圓圓心,設(shè)點A的軌跡為R.

          1)求R的方程;

          2)過點C的動直線m交曲線R于不同的兩點M,N,問在x軸上是否存在一定點QQ不與C重合),使恒成立,若求出Q點的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱ABC-平面ABC,DE,F,G分別為,AC,的中點,AB=BC=,AC==2.

          求證AC平面BEF

          求二面角B-CD-C1的余弦值;

          證明直線FG與平面BCD相交

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足:a1=1,,記.

          1)求b1,b2的值;

          2)證明:數(shù)列{bn}是等比數(shù)列;

          3)求數(shù)列{an}的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):

          根據(jù)以上數(shù)據(jù),繪制了散點圖.

          觀察散點圖,兩個變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,的相關(guān)系數(shù).參考數(shù)據(jù)(其中):

          (1)用反比例函數(shù)模型求關(guān)于的回歸方程;

          (2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產(chǎn)量為10千件時每件產(chǎn)品的非原料成本;

          (3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤,產(chǎn)品單價應(yīng)選擇100元還是90元,請說明理由.

          參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關(guān)系數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案