日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一個多面體的直觀圖和三視圖如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
          (Ⅰ)求證:GN⊥AC;
          (Ⅱ)當FG=GD時,在棱AD上確定一點P,使得GP∥平面FMC,并給出證明.
          分析:由三視圖可得幾何體為水平放置的直三棱柱,且底面ADF中AD⊥DF,DF=AD=DC=a;(1)連接DB,易證FD⊥AD,F(xiàn)D⊥CD,由線面垂直的判定定理和線面垂直的定義,可得結(jié)論;(2)經(jīng)分析得,當點P與點A重合時,GP∥面FMC,下面根據(jù)面面平行的判斷和性質(zhì)可得結(jié)論.
          解答:證明:由三視圖可得幾何體為水平放置的直三棱柱,
          且底面ADF中AD⊥DF,DF=AD=DC=a
          (1)連接DB,可知B、N、D共線,且AC⊥DN,
          又FD⊥AD,F(xiàn)D⊥CD,AD∩CD=D,所以FD⊥面ABCD,F(xiàn)D⊥AC
          又DN∩FD=D,∴AC⊥面FDN,又GN?面FDN
          故可得:GN⊥AC;
          (2)當點P與點A重合時,有GP∥面FMC,下面證明:
          取DC中點S,連接AS、GS、GA
          ∵G是DF的中點,∴GS∥FC,AS∥CM,
          ∴面GSA∥面FMC,GA?面GSA
          ∴GA∥面FMC,即GP∥面FMC
          點評:本題考查直線與平面平行的判定,由題意判斷出該幾何體為直三棱柱以及數(shù)量關(guān)系是解答本題的關(guān)鍵,屬中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)一個多面體的直觀圖和三視圖如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
          (Ⅰ)求證:GN⊥AC;
          (Ⅱ)求二面角F-MC-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一個多面體的直觀圖和三視圖如圖所示精英家教網(wǎng)
          (1)求證:PA⊥BD;
          (2)是否在線段PD上存在一Q點,使二面角Q-AC-D的平面角為30°,設λ=
          DQDP
          ,若存在,求λ;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一個多面體的直觀圖和三視圖如圖所示:

          (I)求證:PA⊥BD;
          (II)連接AC、BD交于點O,在線段PD上是否存在一點Q,使直線OQ與平面ABCD所成的角為30°?若存在,求
          |DQ||DP|
          的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.
          (1)在AD上(含A、D端點)確定一點P,使得GP∥平面FMC;
          (2)一只蒼蠅在幾何體ADF-BCE內(nèi)自由飛翔,求它飛入幾何體F-AMCD內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.精英家教網(wǎng)
          (1)求證:CM⊥平面FDM;
          (2)在線段AD上(含A、D端點)確定一點P,使得GP∥平面FMC,并給出證明.

          查看答案和解析>>

          同步練習冊答案