【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)與f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.
【答案】
(1)解:∵f(xy)=f(x)+f(y),f(2)=1.
∴f(4)=f(2×2)=f(2)+f(2)=2
∴f(8)=f(4×2)=f(4)+f(2)=3
(2)解:根據(jù)題意,不等式f(x)﹣f(x﹣2)>3可變?yōu)?
f(x)>f(x﹣2)+3=f(x﹣2)+f(8)=f[8(x﹣2)]
∵f(x)在(0,+∞)上是增函數(shù), ,
解得 ,
∴原不等式的解集是
【解析】(1)直接把4分成2×2,再代入f(xy)=f(x)+f(y),結(jié)合f(2)=1即可求出f(4)的值,同理可得f(8)的值;(2)先把不等式f(x)﹣f(x﹣2)>3轉(zhuǎn)化為f(x)>f(x﹣2)+3=f(x﹣2)+f(8)=f[8(x﹣2)];再結(jié)合f(x)是定義在(0,+∞)上的增函數(shù)即可求出不等式的解集.(注意其定義域的限制)
科目:高中數(shù)學 來源: 題型:
【題目】對于x∈R,[x]表示不超過x的最整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤ },則A中所有元素的和為( )
A.15
B.19
C.20
D.55
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在 軸上的圓
過點
和
,圓
的方程為
.
(1)求圓 的方程;
(2)由圓 上的動點
向圓
作兩條切線分別交
軸于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點,以AB為直徑作⊙O,并分別交AC,AD于點E,F(xiàn).
(1)證明:C,E,F(xiàn),D四點共圓;
(2)若D為BC的中點,且AF=3,F(xiàn)D=1,求AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)+2= ,當x∈(0,1]時,f(x)=x2 , 若在區(qū)間(﹣1,1]內(nèi),g(x)=f(x)﹣t(x+2)有兩個不同的零點,則實數(shù)t的取值范圍是( )
A.(0, ]
B.(0, ]
C.[﹣ ,
]
D.[﹣ ,
]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:三棱錐中,側(cè)面
垂直底面,
是底面最長的邊;圖1是三棱錐
的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐
的直觀圖的一部分,其中點
在
平面內(nèi).
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐
的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為
,求
的值;
(Ⅲ)求點到面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形
為等腰梯形,
,將
沿
折起,使得平面
平面
為
的中點,連接
(如圖2).
(1)求證: ;
(2)求直線與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com