日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x3+ax2+bx+4在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù).
          (Ⅰ)求b的值;
          (Ⅱ)當(dāng)x≥0時,曲線y=f(x)總在直線y=a2x-4上方,求a的取值范圍.
          分析:(Ⅰ)由題意得:f(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),所以當(dāng)x=0時,f(x)有極大值,即f′(x)=0,即b=0.
          (Ⅱ)因?yàn)閒(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),所以-
          2
          3
          a≥1
          ,即a≤-
          3
          2
          .因?yàn)榍y=f(x)在直線y=a2x-4的上方,設(shè)g(x)=(x3+ax2+4)-(a2x-4),
          所以在x∈[0,+∝)時,g(x)≥0恒成立.用導(dǎo)數(shù)求函數(shù)g(x)的最小值為g(-a),保證其大于0即可.
          解答:解:(Ⅰ)∵f(x)=x3+ax2+bx+4,
          ∴f′(x)=3x2+2ax+b.
          ∵f(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),
          ∴當(dāng)x=0時,f(x)有極大值,即f′(x)=0,
          ∴b=0.
          (Ⅱ)f′(x)=3x2+2ax=x(3x+2a),
          ∵f(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),
          -
          2
          3
          a≥1
          ,即a≤-
          3
          2

          ∵曲線y=f(x)在直線y=a2x-4的上方,
          設(shè)g(x)=(x3+ax2+4)-(a2x-4),
          ∴在x∈[0,+∝)時,g(x)≥0恒成立.
          ∵g′(x)=3x2+2ax-a2=(3x-a)(x+a),
          令g′(x)=0,兩個根為-a,
          a
          3
          ,且
          a
          3
          <0<-a
          ,
          x (0,-a) -a (-a,+∞)
          g′(x) - 0 +
          g(x) 單調(diào)遞減 極小值 單調(diào)遞增
          ∴當(dāng)x=-a時,g(x)有最小值g(-a).
          令g(-a)=(-a3+a3+4)-(-a3-4)>0,
          ∴a3>-8,由a≤-
          3
          2
          ,
          ∴-2<a≤ -
          3
          2
          點(diǎn)評:解決此類問題的關(guān)鍵是將不等式在某個區(qū)間上恒成立問題轉(zhuǎn)化為函數(shù)在該區(qū)間上的最值問題,再利用導(dǎo)數(shù)求函數(shù)的最值,這也是高考考查的熱點(diǎn)之一.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案