日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)不過點A的動直線l與橢圓C相交于PQ兩點,且=0.求證:直線l過定點,并求出該定點的坐標.

          【答案】分析:(Ⅰ)確定圓M的圓心與半徑,利用直線AF與圓M相切,根據(jù)點到直線的距離公式,求得幾何量,從而可求橢圓C的方程;
          (Ⅱ)設(shè)直線AP的方程為y=kx+1,則直線AQ的方程為y=-,分別與橢圓C的方程聯(lián)立,求得P、Q的坐標,可得直線l的方程,即可得到結(jié)論.
          解答:(Ⅰ)解:將圓M的一般方程x2+y2-6x-2y+7=0化為標準方程(x-3)2+(y-1)2=3,
          圓M的圓心為M(3,1),半徑r=
          由A(0,1),F(xiàn)(c,0)(c=),得直線AF:+y=1,即x+cy-c=0,
          由直線AF與圓M相切,得=,∴c2=2
          ∴a2=c2+1=3,∴橢圓C的方程為C:+y2=1;
          (Ⅱ)證明:∵=0,∴AP⊥AQ,從而直線AP與坐標軸不垂直,
          由A(0,1)可設(shè)直線AP的方程為y=kx+1,則直線AQ的方程為y=-
          將y=kx+1代入橢圓C的方程,整理得:(1+3k2)x2+6kx=0,
          解得x=0或x=-,因此P的坐標為(-,-+1),
          即P(-,
          將上式中的k換成-,得Q(
          ∴直線l的斜率為=
          直線l的方程為y=(x-)+
          化簡得直線l的方程為y=x-,因此直線l過定點N(0,-).
          點評:本題考查直線與圓的位置關(guān)系,考查橢圓的標準方程,考查圓錐曲線和直線的位置關(guān)系,考查韋達定理的運用,考查學(xué)生的計算能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓C1
          x2
          4
          +y2=1和C2
          x2
          16
          +
          y2
          4
          =1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
          (2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          b2
          +
          y2
          a2
          =1(a>b>0)
          的左、右焦點分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點E在第一象限,與橢圓C相交于A、B兩點,且
          F2B
          =λ
          AF2

          (1)求證:切線l的斜率為定值;
          (2)若動點T滿足:
          ET
          =μ(
          EF1
          +
          EF2
          ),μ∈(0,
          1
          2
          )
          ,且
          ET
          OT
          的最小值為-
          5
          4
          ,求拋物線P的方程;
          (3)當λ∈[2,4]時,求橢圓離心率e的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,F(xiàn)1、F2分別為橢圓C的左、右焦點,A(0,b),且
          F1A
          F2A
          =-2過左焦點F1作直線l交橢圓于P1、P2兩點.
          (1)求橢圓C的方程;
          (2)若直線l的傾斜角a∈[
          π
          3
          ,
          3
          ],直線OP1,OP2與直線x=-
          4
          3
          3
          分別交于點S、T,求|ST|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點為F1(1,0)、F2(-1,0),離心率為
          2
          2
          ,過點A(2,0)的直線l交橢圓C于M、N兩點.
          (1)求橢圓C的方程;
          (2)①求直線l的斜率k的取值范圍;
          ②在直線l的斜率k不斷變化過程中,探究∠MF1A和∠NF1F2是否總相等?若相等,請給出證明,若不相等,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•梅州一模)如圖,已知橢圓C:
          x2
          a2
          +y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)不過點A的動直線l與橢圓C相交于PQ兩點,且
          AP
          AQ
          =0.求證:直線l過定點,并求出該定點的坐標.

          查看答案和解析>>

          同步練習(xí)冊答案