已知已知點(2,3)在雙曲線C:

上,C的焦距為4,
則它的離心率為( )
【考察目標(biāo)】本題考查雙曲線的概念,標(biāo)準(zhǔn)方程和幾何性質(zhì),綜合考察運算求解能力。
【解題思路】 解法1:設(shè)

,則


解法2:

,根據(jù)雙曲線的定義知

,

練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分) 已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為

,且過

,設(shè)點

.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若

是橢圓上的動點,求線段

中點

的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
C:
x2 –
y2 =
a2的中心在原點,焦點在
x軸上,
C與拋物線
y2=16
x的準(zhǔn)線交于
A、
B兩點,

,則雙曲線
C的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線

的焦點

和點

為拋物線上一點,則

的最小值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)

,

,△

的周長是

,則

的頂點

的軌跡方程為___
________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
(1)焦點在x軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是

,并經(jīng)過點

,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓

的焦點在

軸上,離心率為

,對稱軸為坐標(biāo)軸,且經(jīng)過點

.
(I)求橢圓

的方程;
(II)直線

與橢圓

相交于

、

兩點,

為原點,在

、

上分別存在異于

點的點

、

,使得

在以

為直徑的圓外,求直線斜率

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
以

為中心,

,

為兩個焦點的橢圓上存在一點

,滿足

,則該橢圓的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)如圖橢圓

的上頂點為A,左頂點為B, F為右焦點, 過F作平行于AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上。

(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為

, 求橢圓的方程.
查看答案和解析>>