日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-1:幾何證明選講
          如圖,在等腰梯形ABCD中,對(duì)角線AC⊥BD,且相交于點(diǎn)O ,E是AB邊的中點(diǎn),EO的延長(zhǎng)線交CD于F.

          (1)求證:EF⊥CD;
          (2)若∠ABD=30°,求證
          (1)先證明△AOB≌△DOC, 從而得出∠ODC=∠OAB,進(jìn)而可以證明結(jié)論;
          (2)先證明△DOC∽△DFO,利用面積比等于相似比的平方比即可證明.

          試題分析:(1)∵ △AOB為直角三角形,且E 為AB邊的中點(diǎn),
          ∴EO="EA=EB," ∴∠EAO=∠EOA, ∠EOB=∠EBO,
          又△AOB≌△DOC, ∴∠ODC=∠OAB,
          ∠EOB=∠DOF(對(duì)頂角),∴∠ODC+∠DOF=90°
          ∴∠DFO=90°
          ∴EF⊥CD
          (2)∵∠ABD=30°∴∠EOB=∠DOF=30°,
          ∴在Rt△DOF中,DF=OD,△DOC∽△DFO,
          所以根據(jù)面積比等于相似比的平方比,知
          點(diǎn)評(píng):在利用相似三角形解答時(shí),注意通過對(duì)應(yīng)邊找對(duì)應(yīng)角,通過對(duì)應(yīng)角找對(duì)應(yīng)邊,不要找錯(cuò)了。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF平面AC E.

          (1)求證:AEBE;
          (2)求三棱錐D—AEC的體積;
          (3)求二面角A—CD—E的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,底面為直角梯形,且,側(cè)面底面. 若.

          (Ⅰ)求證:平面
          (Ⅱ)側(cè)棱上是否存在點(diǎn),使得平面?若存在,指出點(diǎn) 的位置并證明,若不存在,請(qǐng)說明理由;
          (Ⅲ)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在正三棱柱中,,的中點(diǎn),是線段上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且.

          (1)若,求證:;
          (2)若直線與平面所成角的大小為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

          (Ⅰ)求證:BFAD;
          (Ⅱ)求直線BD與平面BCF所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)EF分別在棱BB1、CC1上,且BEBB,C1FCC1.

          (1)求異面直線AEA1 F所成角的大。
          (2)求平面AEF與平面ABC所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,⊥平面,的中點(diǎn), 的中點(diǎn),底面是菱形,對(duì)角線,交于點(diǎn)

          求證:(1)平面平面
          (2)平面⊥平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四邊形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

          求證:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題共12分)
          如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=

          (1)求證:平面PQB⊥平面PAD;
          (2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案