【題目】如圖在棱錐中,
為矩形,
面
,
(1)在上是否存在一點(diǎn)
,使
面
,若存在確定
點(diǎn)位置,若不存在,請說明理由;
(2)當(dāng)為
中點(diǎn)時,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點(diǎn)E為中點(diǎn);(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角P﹣AE﹣D的余弦值.
(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,
所以由,即存在點(diǎn)E為PC中點(diǎn).
法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ, 由題意知PD=CD=1,
,設(shè)
,
,
,由
,得
,
即存在點(diǎn)E為PC中點(diǎn).
(2)由(1)知,
,
,
,
,
,
設(shè)面ADE的法向量為,面PAE的法向量為
由的法向量為得,
得
,
同理求得
所以,
故所求二面角P-AE-D的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班進(jìn)行了次數(shù)學(xué)測試,其中甲、乙兩人的成績統(tǒng)計(jì)情況如莖葉圖所示:
(I)該班數(shù)學(xué)老師決定從甲、乙兩人中選派一人去參加數(shù)學(xué)比賽,你認(rèn)為誰去更合適?并說明理由;
(II)從甲的成績中人去兩次作進(jìn)一步的分析,在抽取的兩次成績中,求至少有一次成績在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
討論函數(shù)
的單調(diào)性;
設(shè)
,對任意
的恒成立,求整數(shù)
的最大值;
求證:當(dāng)
時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,新苗中學(xué)數(shù)學(xué)教師對新入學(xué)的名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于
小時的有
人,余下的人中,在高三模擬考試中數(shù)學(xué)成績不足
分的占
,統(tǒng)計(jì)成績后,得到如下的
列聯(lián)表:
分?jǐn)?shù)大于等于 | 分?jǐn)?shù)不足 | 合計(jì) | |
周做題時間不少于 | 4 | 19 | |
周做題時間不足 | |||
合計(jì) | 45 |
()請完成上面的
列聯(lián)表,并判斷能否在犯錯誤的概率不超過
的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”.
()(i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于
分和分?jǐn)?shù)不足
分的兩組學(xué)生中抽取
名學(xué)生,設(shè)抽到的不足
分且周做題時間不足
小時的人數(shù)為
,求
的分布列(概率用組合數(shù)算式表示).
(ii)若將頻率視為概率,從全校大于等于分的學(xué)生中隨機(jī)抽取
人,求這些人中周做題時間不少于
小時的人數(shù)的期望和方差.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線
與
在原點(diǎn)處的切線相同。
(1)求的值;
(2)求的單調(diào)區(qū)間和極值;
(3)若時,
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在到
之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為( )
A.,78
B.,83
C.,78
D.,83
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線
的參數(shù)方程是
(m>0,t為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若直線與
軸交于點(diǎn)
,與曲線
交于點(diǎn)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰梯形ABCD中,,
,E,F為AB的三等分點(diǎn),且
將
和
分別沿DE、CF折起到A、B兩點(diǎn)重合,記為點(diǎn)P.
證明:平面
平面PEF;
若
,求PD與平面PFC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“新車嗨翻天!首付3000元起開新車”這就是毛豆新車網(wǎng)打出來的廣告語.某人看到廣告,興奮不已,計(jì)劃于2019年1月在該網(wǎng)站購買一輛某品牌汽車,他從當(dāng)?shù)亓私獾浇鍌月該品牌汽車實(shí)際銷量如表:
月份 | 2018.08 | 2018.09 | 2018.10 | 2018.11 | 2018.12 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
銷量y(萬輛) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放破噷?shí)際銷量y(萬輛)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程,并估計(jì)2019年1月份該品牌汽車的銷量:
(2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對購該品牌車進(jìn)行補(bǔ)貼.已知某地?cái)M購買該品牌汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
補(bǔ)貼金額預(yù)期值 區(qū)間(萬元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購買該品牌汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對補(bǔ)貼金額的心理預(yù)期值不低于3萬元的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ)
參考公式及數(shù)據(jù):①回歸方程,其中
,
;②
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com