日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】[2019·吉林期末]一個袋中裝有6個大小形狀完全相同的球,球的編號分別為1,2,3,4,5,6.

          (1)從袋中隨機抽取兩個球,求取出的球的編號之和為6的概率;

          (2)先后有放回地隨機抽取兩個球,兩次取的球的編號分別記為,求的概率.

          【答案】(1);(2).

          【解析】

          (1) 從袋中隨機取兩個球, 利用列舉法求出所有的基本事件個數(shù), 再用列舉法求出取出的編號之和為6 包含的基本事件有個數(shù), 由此能求出取出的球的編號之和為6概率

          (2) 基本事件總數(shù),再用列舉法求出包含的基本事件的個數(shù), 由此能求出的概率

          解:(1)從袋中隨機抽取兩個球共有15種取法,

          取出球的編號之和為6的有,共2種取法,

          故所求概率.

          (2)先后有放回地隨機抽取兩個球共有36種取法,

          兩次取的球的編號之和大于5的有,,,,,,,,,,,,,,,,,,共26種取法,

          故所求概率.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,且過點

          (Ⅰ)求橢圓的方程.

          (Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直三棱柱中,為等腰直角三角形,,且,分別為,的中點.

          (1)求證:直線平面;

          (2)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓E的中心在原點,焦點在x軸上,橢圓的左頂點坐標(biāo)為,離心率為

          求橢圓E的方程;

          過點作直線lEP、Q兩點,試問:在x軸上是否存在一個定點M,使為定值?若存在,求出這個定點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):

          )根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?(現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

          將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,的數(shù)學(xué)期望和方差.

          參考公式 其中.

          參考數(shù)據(jù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到下表(單位:人):

          (Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?(Ⅱ)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

          1分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

          2從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

          參考公式 其中.

          參考數(shù)據(jù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)當(dāng)時,求曲線上的點到直線的距離的最大值;

          (2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某網(wǎng)站調(diào)查2016年大學(xué)畢業(yè)生就業(yè)狀況,其中一項數(shù)據(jù)顯示“2016年就業(yè)率最高學(xué)科”為管理學(xué),高達(數(shù)據(jù)來源于網(wǎng)絡(luò),僅供參考).為了解高三學(xué)生對“管理學(xué)”的興趣程度,某校學(xué)生社團在高校高三文科班進行了問卷調(diào)查,問卷共100道選擇題,每題1分,總分100分,社團隨機抽取了100名學(xué)生的問卷成績(單位:分)進行統(tǒng)計,得到頻率分布表如下:

          組號

          分組

          男生

          女生

          頻數(shù)

          頻率

          第一組

          3

          2

          5

          0.05

          第二組

          17

          第三組

          20

          10

          30

          0.3

          第四組

          6

          18

          24

          0.24

          第五組

          4

          12

          16

          0.16

          合計

          50

          50

          100

          1

          (1)求頻率分布表中, 的值;

          (2)若將得分不低于60分的稱為“管理學(xué)意向”學(xué)生,將低于60分的稱為“非管理學(xué)意向”學(xué)生,根據(jù)條件完成下面列聯(lián)表,并據(jù)此判斷是否有的把握認為是否為“管理學(xué)意向”與性別有關(guān)?

          非管理學(xué)意向

          管理學(xué)意向

          合計

          男生

          女生

          合計

          (3)心理咨詢師認為得分低于20分的學(xué)生可能“選擇困難”,要從“選擇困難”的5名學(xué)生中隨機抽取2名學(xué)生進行心理輔導(dǎo),求恰好有1名男生,1名女生被選中的概率.

          參考公式: ,其中

          參考臨界值:

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列判斷中正確的是( )

          A. “若,則有實數(shù)根”的逆否命題是假命題

          B. ”是“直線與直線平行”的充要條件

          C. 命題“”是真命題

          D. 命題“”在時是假命題

          查看答案和解析>>

          同步練習(xí)冊答案