日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了普及環(huán)保知識增強環(huán)保意識,某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識測試 附:k2= ,n=a+b+c+d

          P(K2>k0

          0.100

          0.050

          0.025

          0.010

          0.005

          k0

          2.706

          3.841

          5.024

          6.635

          7.879


          (1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認為環(huán)保知識與專業(yè)有關(guān)

          優(yōu)秀

          非優(yōu)秀

          總計

          甲班

          乙班

          30

          總計

          60


          (2)為參加上級舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過預(yù)選,若每位同學(xué)得60分以上的概率為 ,得80分以上的概率為 ,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機變量X表示甲班通過預(yù)選的人數(shù),求X的分布列及期望E(X).

          【答案】
          (1)解:2×2列聯(lián)表如下

          優(yōu)秀

          非優(yōu)秀

          總計

          甲班

          40

          20

          60

          乙班

          20

          30

          50

          總計

          60

          50

          110

          K2= ≈7.8>6.635,

          所以有99%的把握認為環(huán)保知識與專業(yè)有關(guān)


          (2)解:不妨設(shè)3名同學(xué)為小王,小張,小李且小王為優(yōu)秀,記事件M,N,R分別表示小王,小張,小李通過預(yù)選,則P(M)= ,P(N)=P(R)=

          隨機變量X的取值為0,1,2,3

          所以P(X=0)=P( )= × × = ,

          P(X=1)=P(M + N + R)= × × + × × + × × =

          P(X=2)=P(MN + NR+M R)= × × + × × + × × = ,

          P(X=3)=P(MNR)= × × =

          所以隨機變量X的分布列為:

          X

          0

          1

          2

          3

          P

          E(X)=0× +1× +2× +3× =


          【解析】(1)由題設(shè)條件作出列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.8>6.635.由此得到有99%的把握認為環(huán)保知識測試與專業(yè)有關(guān).(2)由題設(shè)知X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:活水圍網(wǎng)養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過/立方米時, 的值為千克/年;當(dāng)時, 的一次函數(shù),且當(dāng)時,

          )當(dāng)時,求關(guān)于的函數(shù)的表達式.

          )當(dāng)養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數(shù)t的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以平面直角坐標(biāo)系的原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),若交于兩點.

          (Ⅰ)求圓的直角坐標(biāo)方程;

          (Ⅱ)設(shè)的值.

          【答案】(1);(2)1.

          【解析】試題分析:(1)先根據(jù) 將圓的極坐標(biāo)方程化為直角坐標(biāo)方程(2)先將直線參數(shù)方程調(diào)整化簡,再將直線參數(shù)方程代入圓直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得,最后利用韋達定理求解

          試題解析:(Ⅰ)由,得,

          (Ⅱ)把,

          代入上式得

          ,則 ,

          .

          型】解答
          結(jié)束】
          23

          【題目】證明:(Ⅰ)已知是正實數(shù).求證 ;

          (Ⅱ)已知,, , .求證 中至少有一個是負數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是R上的偶函數(shù),在(﹣3,﹣2)上為減函數(shù)且對x∈R都有f(2﹣x)=f(x),若A,B是鈍角三角形ABC的兩個銳角,則(
          A.f(sinA)<f(cosB)
          B.f(sinA)>f(cosB)
          C.f(sinA)=f(cosB)
          D.f(sinA)與與f(cosB)的大小關(guān)系不確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為
          (1)求橢圓的方程;
          (2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某個體經(jīng)營者把開始六個月試銷A、B兩種商品的逐月投資與所獲純利潤列成下表:

          投資A商品金額(萬元)

          1

          2

          3

          4

          5

          6

          獲純利潤(萬元)

          0.65

          1.39

          1.85

          2

          1.84

          1.40

          投資B商品金額(萬元)

          1

          2

          3

          4

          5

          6

          獲純利潤(萬元)

          0.25

          0.49

          0.76

          1

          1.26

          1.51

          該經(jīng)營者準(zhǔn)備下月投入12萬元經(jīng)營這兩種產(chǎn)品,但不知投入AB兩種商品各多少才最合算請你幫助制定一下資金投入方案,使得該經(jīng)營者能獲得最大利潤,并按你的方案求出該經(jīng)營者下月可獲得的最大利潤(結(jié)果保留兩個有效數(shù)字)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點是圓上任意一點,點與點關(guān)于原點對稱,線段的垂直平分線與交于.

          (1)求點的軌跡的方程;

          (2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如下:

          高峰時間段用電價格表

          低谷時間段用電價格表

          高峰月用

          電量(單

          位:千瓦時)

          高峰電價

          (單位:元/

          千瓦時)

          低谷月用

          電量(單位:

          千瓦時)

          低谷電價

          (單位:元/

          千瓦時)

          50及以下

          的部分

          0.568

          50及以下

          的部分

          0.288

          超過 50 至

          200 的部分

          0.598

          超過 50 至

          200 的部分

          0.318

          超過200

          的部分

          0.668

          超過 200

          的部分

          0.388

          若某家庭5月份的高峰時間段用電量為 200 千瓦時,低谷時間段用電量為 100 千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為____________元.(用數(shù)字作答)

          查看答案和解析>>

          同步練習(xí)冊答案