已知橢圓和動(dòng)圓
,直線:
與
和
分別有唯一的公共點(diǎn)
和
.
(Ⅰ)求的取值范圍;
(Ⅱ)求的最大值,并求此時(shí)圓
的方程.
(Ⅰ)[1,2)(Ⅱ)1,x2+y2=2
解析試題分析:(Ⅰ)將直線方程與橢圓方程聯(lián)立消去
整理成關(guān)于
的一元二次方程,因?yàn)橹本與橢圓只有一個(gè)公共點(diǎn),則判別式為0,列出關(guān)于m,k的方程,再由直線
與圓只有一個(gè)公共點(diǎn)知,直線
與圓相切,利用圓心到直線的距離等于半徑找出r,m,k關(guān)系,將這兩個(gè)關(guān)于m,k的方程聯(lián)立,消去m,將r表示成k的函數(shù),利用函數(shù)求值域的方法,求出r范圍;(Ⅱ)由(Ⅰ)可求得A,B兩點(diǎn)的橫坐標(biāo),利用弦長(zhǎng)公式將AB用r表示出來,利用函數(shù)求最值的方法,求出|AB|的最大值及取最大值時(shí)的r值,從而寫出圓的方程.
試題解析:(Ⅰ)由,得(1+4k2)x2+8kmx+4(m2﹣1)=0.
由于l與C1有唯一的公共點(diǎn)A,故△1=64k2m2﹣16(1+4k2)(m2﹣1)=0, 2分
從而m2=1+4k2 ①
由,得(1+k2)x2+2kmx+m2﹣r2=0.
由于l與C2有唯一的公共點(diǎn)B,故△2=4k2m2﹣4(1+k2)(m2﹣r2)=0, 4分
從而m2=r2(1+k2) ②
由①、②得k2=.
由k2≥0,得1≤r2<4,所以r的取值范圍是[1,2). 6分
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),由(Ⅰ)的解答可知
x1=﹣=﹣
,x2=﹣
=﹣
.
|AB|2=(1+k2)(x2﹣x1)2=(1+k2)•=
•k2•(4﹣r2)2
=•(4﹣r2)2=
, 9分
所以|AB|2=5﹣(r2+)(1≤r<2).
因?yàn)閞2+≥2×2=4,當(dāng)且僅當(dāng)r=
時(shí)取等號(hào),
所以當(dāng)r=時(shí),|AB|取最大值1,此時(shí)C2的方程為x2+y2=2. 12分
考點(diǎn):直線與橢圓的位置關(guān)系,直線與圓的位置關(guān)系,最值問題,轉(zhuǎn)化與化歸思想,運(yùn)算求解能力
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長(zhǎng)等于
的短軸長(zhǎng).
與
軸的交點(diǎn)為
,過坐標(biāo)原點(diǎn)
的直線
與
相交于點(diǎn)
,直線
分別與
相交于點(diǎn)
.
(Ⅰ)求、
的方程;
(Ⅱ)求證:;
(Ⅲ)記的面積分別為
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.
(1)若直線與拋物線
相交于
兩點(diǎn),求
弦長(zhǎng);
(2)已知△的三個(gè)頂點(diǎn)在拋物線
上運(yùn)動(dòng).若點(diǎn)
在坐標(biāo)原點(diǎn),
邊過定點(diǎn)
,點(diǎn)
在
上且
,求點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓點(diǎn)
,離心率為
,左右焦點(diǎn)分別為
(1)求橢圓的方程;
(2)若直線與橢圓交于
兩點(diǎn),與以
為直徑的圓交于
兩點(diǎn),且滿足
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C上任意一點(diǎn)P到兩定點(diǎn)F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸負(fù)半軸交點(diǎn)為A,過點(diǎn)M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(diǎn)(B在M、C之間),N為BC中點(diǎn).
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實(shí)數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E:+
=1(a>b>0)的上焦點(diǎn)是F1,過點(diǎn)P(3,4)和F1作直線PF1交橢圓于A,B兩點(diǎn),已知A(
,
).
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)C是橢圓E上到直線PF1距離最遠(yuǎn)的點(diǎn),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若點(diǎn)P在曲線C1:上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則| PQ |-| PR | 的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
橢圓的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2作傾斜角為
的直線與橢圓的一個(gè)交點(diǎn)為M,若MF1垂直于x軸,則橢圓的離心率為______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com