日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若a=2,b=3,∠C=2∠A.
          (I)求c的值;
          (Ⅱ)求△ABC的面積.

          【答案】解:(I)∵∠C=2∠A,a=2,b=3,

          ∴sinC=sin2A=2sinAcosA,

          ∵在△ABC中,由正弦定理 = ,

          ∴可得c=2acosA=2a ,可得:bc2=a(b2+c2﹣a2),即:9=2(9+c2﹣4),

          ∴解得:c=

          (Ⅱ)在△ABC中,由余弦定理cosC= = ,可得sinC= = ,

          故S△ABC= absinC=


          【解析】(I)由已知及二倍角的正弦函數(shù)公式,正弦定理,余弦定理可得c=2acosA=2a ,整理可得bc2=a(b2+c2﹣a2),代入a,b的值即可計(jì)算得解.(Ⅱ)由余弦定理可求cosC,利用同角三角函數(shù)基本關(guān)系式可求sinC,根據(jù)三角形面積公式即可計(jì)算得解.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù),關(guān)于 的方程 有四個(gè)相異實(shí)根,則實(shí)數(shù) 的取值范圍是( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=(x﹣a)ex , a∈R. (Ⅰ)當(dāng)a=1時(shí),試求f(x)的單調(diào)增區(qū)間;
          (Ⅱ)試求f(x)在[1,2]上的最大值;
          (Ⅲ)當(dāng)a=1時(shí),求證:對(duì)于x∈[﹣5,+∞), 恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大。
          (Ⅱ)當(dāng)a≥﹣1時(shí),若函數(shù)f(x)的圖象和x軸圍成一個(gè)三角形,則實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點(diǎn)F. ( I )求直線l的普通方程;
          (Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直線l與曲線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
          (Ⅰ)若 ,求證:直線l恒過定點(diǎn),并求出定點(diǎn)坐標(biāo);
          (Ⅱ)若直線l與曲線C1相切,M(1,0),求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】直線 與圓x2+y2=1相交于A、B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為(
          A.0
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某大學(xué)中文系共有本科生5000人,其中一、二、三、四年級(jí)的學(xué)生比為5:4:3:1,要用分層抽樣的方法從該系所有本科生中抽取一個(gè)容量為260的樣本,則應(yīng)抽二年級(jí)的學(xué)生(
          A.100人
          B.60人
          C.80人
          D.20人

          查看答案和解析>>

          同步練習(xí)冊(cè)答案