【題目】如圖,在平行四邊形中,
,
,現(xiàn)沿對角線
將
折起,使點A到達點P,點M,N分別在直線
,
上,且A,B,M,N四點共面.
(1)求證:;
(2)若平面平面
,二面角
平面角大小為
,求直線
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)根據(jù)余弦定理,可得,利用
//
,可得
//平面
,然后利用線面平行的性質(zhì)定理,
//
,最后可得結(jié)果.
(2)根據(jù)二面角平面角大小為
,可知N為
的中點,然后利用建系,計算
以及平面
的一個法向量,利用向量的夾角公式,可得結(jié)果.
(1)不妨設(shè),則
,
在中,
,
則,
因為,
所以,因為
//
,
且A、B、M、N四點共面,所以//平面
.
又平面平面
,所以
//
.
而,
.
(2)因為平面平面
,且
,
所以平面
,
,
因為,所以
平面
,
,
因為,平面
與平面
夾角為
,
所以,在
中,易知N為
的中點,
如圖,建立空間直角坐標(biāo)系,
則,
,
,
,
,
,
,
,
設(shè)平面的一個法向量為
,
則由,
令,得
.
設(shè)與平面
所成角為
,
則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著國家綜合國力的提升和科技的進步,截至2018年底,中國鐵路運營里程達13,2萬千米,這個數(shù)字比1949年增長了5倍;高鐵運營里程突破2.9萬千米,占世界高鐵運營里程的60%以上,居世界第一位下表截取了2012--2016年中國高鐵密度的發(fā)展情況(單位:千米/萬平方千米).
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
高鐵密度 | 9.75 | 11.49 | 17.14 | 20.66 | 22.92 |
已知高鐵密度y與年份代碼x之間滿足關(guān)系式(
為大于0的常數(shù))若對
兩邊取自然對數(shù),得到
,可以發(fā)現(xiàn)
與
線性相關(guān).
(1)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程(保留到小數(shù)點后一位);
(2)利用(1)的結(jié)論,預(yù)測到哪一年高鐵密度會超過30千米/平方千米.
參考公式設(shè)具有線性相關(guān)系的兩個變量的一組數(shù)據(jù)為
,
則回歸方程的系數(shù):
,
.
參考數(shù)據(jù):,
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線C:x2=4y的準(zhǔn)線上任意一點P作拋物線的切線PA,PB,切點分別為A,B,則A點到準(zhǔn)線的距離與B點到準(zhǔn)線的距離之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
,且
過點
,曲線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)求曲線上的點到直線
的距離的最大值;
(Ⅱ)過點與直線
平行的直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在
軸上,左頂點為
,左焦點為
,點
在橢圓
上,直線
與橢圓
交于
,
兩點,直線
,
分別與
軸交于點
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某親子公園擬建議廣告牌,將邊長為米的正方形ABCD和邊長為1米的正方形AEFG在A點處焊接,AM、AN、GM、DN均用加強鋼管支撐,其中支撐鋼管GM、DN垂直于地面于M點和N點,且GM、DN、MN長度相等
不計焊接點大小
若
時,求焊接點A離地面距離;
若記
,求加強鋼管AN最長為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如表:
質(zhì)量指標(biāo)值m | 25≤m<35 | 15≤m<25或35≤m<45 | 0<m<15或45≤m<65 |
等級 | 一等品 | 二等品 | 三等品 |
某企業(yè)從生產(chǎn)的這種產(chǎn)品中抽取100件產(chǎn)品作為樣本,檢測其質(zhì)量指標(biāo)值,得到下圖的率分布直方圖.(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)
(1)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品三等品數(shù)Y近似滿足Y~H(10,15,100),請測算“質(zhì)量提升月”活動后這種產(chǎn)品的“二等品率“(一、二等品其占全部產(chǎn)品百分比)較活動前提高多少個百分點?
(2)若企業(yè)每件一等品售價180元,每件二等品售價150元,每件三等品售價120元,以樣本中的頻率代替相應(yīng)概率,現(xiàn)有一名聯(lián)客隨機購買兩件產(chǎn)品,設(shè)其支付的費用為X(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學(xué)校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為且
;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為
分,乙和丙最后得分都是
分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場比賽獲得第三名
B. 每場比賽第一名得分為
C. 甲可能有一場比賽獲得第二名
D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com