日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為(  )

          (附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)

          A. 4.56%B. 13.59%C. 27.18%D. 31.74%

          【答案】B

          【解析】

          由題意P(﹣3ξ3)=68.27%,P(﹣6ξ6)=95.45%,可得P3ξ6)=95.45%68.27%),即可得出結(jié)論.

          解:由題意P(﹣3ξ3)=68.27%P(﹣6ξ6)=95.45%,

          P3ξ6)=95.45%68.27%)=13.59%

          故選B

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列滿足an=2an-1+2n+1(n∈N*,n≥2), .

          (1)求的值;

          (2)是否存在一個實數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實數(shù)t;若不存在,請說明理由;

          (3)求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一智能掃地機(jī)器人在處發(fā)現(xiàn)位于它正西方向的處和北偏東30°方向上的處分別有需要清掃的垃圾,紅外線感應(yīng)測量發(fā)現(xiàn)機(jī)器人到的距離比到的距離少0.4米,于是選擇沿路線清掃,已知智能掃地機(jī)器人的直線行走速度為0.2,忽略機(jī)器人吸入垃圾及在處旋轉(zhuǎn)所用時間,10秒鐘完成了清掃任務(wù).

          1、兩處垃圾的距離是多少?

          2)智能掃地機(jī)器人此次清掃行走路線的夾角的正弦值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

          (Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

          ( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

          【答案】(1);.

          (2).

          【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡得直角坐標(biāo)方程.(II)求得兩點的坐標(biāo), 設(shè)點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

          試題解析】

          (Ⅰ)圓的參數(shù)方程為為參數(shù)).

          直線的直角坐標(biāo)方程為.

          (Ⅱ)由直線的方程可得點,點.

          設(shè)點,則 .

          .

          由(Ⅰ)知,則 .

          因為,所以.

          型】解答
          結(jié)束】
          23

          【題目】選修4-5:不等式選講

          已知函數(shù), .

          (Ⅰ)若對于任意, 都滿足,求的值;

          (Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

          收看

          沒收看

          男生

          60

          20

          女生

          20

          20

          (Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為收看開幕式與性別有關(guān)?

          (Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

          (ⅰ)問男女學(xué)生各選取多少人?

          (ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

          附:,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張、型型桌子分別獲利潤2千元和3千元.

          (1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;

          (2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠家具車間造型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時和2小時,漆工油漆一張型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張、型型桌子分別獲利潤2千元和3千元.

          (1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;

          (2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:

          打算觀看

          不打算觀看

          女生

          20

          b

          男生

          c

          25

          1)求出表中數(shù)據(jù)b,c;

          2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

          3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

          P(K2≥k0)

          0.10

          0.05

          0.025

          0.01

          0.005

          K0

          2.706

          3.841

          5.024

          6.635

          7.879

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)是偶函數(shù),且滿足,當(dāng)時, ,當(dāng)時, 的最大值為.

          (1)求實數(shù)的值;

          (2)函數(shù),若對任意的,總存在,使不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案