日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知曲線 為參數(shù)), 為參數(shù))

          (Ⅰ)將的方程化為普通方程,并說明它們分別表示什么曲線;

          (Ⅱ)若上的點(diǎn)對應(yīng)的參數(shù)為,上的動點(diǎn),求中點(diǎn)到直線 為參數(shù))距離的最小值.

          【答案】(Ⅰ),為圓心是,半徑是的圓;,為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,長半軸長是,短半軸長是的橢圓;(Ⅱ).

          【解析】

          (1)根據(jù) 消參即可得到 的普通方程,由普通方程可知為圓心是,半徑是的圓,為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,長半軸長是,短半軸長是的橢圓。

          (2)根據(jù)題意求出坐標(biāo),利用的參數(shù)方程設(shè)出Q的直角坐標(biāo),由題意可得中點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式、輔助角公式求出最小距離。

          解:(,

          為圓心是,半徑是的圓

          為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,長半軸長是,短半軸長是的橢圓

          )當(dāng)時,,故

          為直線,的距離

          從而當(dāng)時,取得最小值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記甲得第一名乙得第二名,丙得第三名,若是真命題,是假命題,是真命題,則選拔賽的結(jié)果為(

          A.甲得第一名、乙得第三名、丙得第二名

          B.甲沒得第一名、乙沒得第二名、丙得第三名

          C.甲得第一名、乙沒得第二名、丙得第三名

          D.甲得第二名、乙得第一名、丙得第三名

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (1)討論函數(shù)的單調(diào)性;

          (2)若不等式上恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】把一顆骰子投擲2次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為,第二次出現(xiàn)的點(diǎn)數(shù)為,試就方程組解答下列各題:

          1)求方程組只有一個解的概率;

          2)求方程組只有正數(shù)解的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某籃球隊甲、乙兩名運(yùn)動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

          A. 甲的極差是29 B. 甲的中位數(shù)是24

          C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

          (Ⅱ)若函數(shù)有兩個極值點(diǎn)分別為,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρ1-cos2θ=8cosθ,直線ρcosθ=1與曲線C相交于MN兩點(diǎn),直線l過定點(diǎn)P2,0)且傾斜角為α,l交曲線CA,B兩點(diǎn).

          1)把曲線C化成直角坐標(biāo)方程,并求|MN|的值;

          2)若|PA||MN|,|PB|成等比數(shù)列,求直線l的傾斜角α

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)常數(shù),已知復(fù)數(shù),,其中均為實數(shù),為虛數(shù)單位,且對于任意復(fù)數(shù),有,將作為點(diǎn)的坐標(biāo),作為點(diǎn)的坐標(biāo),通過關(guān)系式,可以看作是坐標(biāo)平面上點(diǎn)的一個變換,它將平面上的點(diǎn)變到這個平面上的點(diǎn).

          1)分別寫出表示的關(guān)系式;

          2)設(shè),當(dāng)點(diǎn)在圓上移動時,求證:點(diǎn)經(jīng)該變換后得到的點(diǎn)落在一個圓上,并求出該圓的方程;

          3)求證:對于任意的常數(shù),總存在曲線,使得當(dāng)點(diǎn)上移動時,點(diǎn)經(jīng)這個變換后得到的點(diǎn)的軌跡是二次函數(shù)的圖像,并寫出對于正常數(shù),滿足條件的曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

          (1)求圓的極坐標(biāo)方程;

          (2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,所圍成圖形的面積.

          查看答案和解析>>

          同步練習(xí)冊答案