日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C1 + =1,圓C2:x2+y2=t經(jīng)過(guò)橢圓C1的焦點(diǎn).
          (1)設(shè)P為橢圓上任意一點(diǎn),過(guò)點(diǎn)P作圓C2的切線,切點(diǎn)為Q,求△POQ面積的取值范圍,其中O為坐標(biāo)原點(diǎn);
          (2)過(guò)點(diǎn)M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點(diǎn)A,B,C,D,若|AB|=|CD|,求直線l的方程.

          【答案】
          (1)解:橢圓C1 + =1的焦點(diǎn)坐標(biāo)為(± ,0),則t=2,設(shè)P(x,y),則丨PO丨= = = ,

          由x2∈[0,6],則丨PO丨∈[2, ],

          則△POQ面積S,S= × × ∈[1, ],

          △POQ面積的取值范圍[1, ]


          (2)解:設(shè)直線l的方程為:x=my﹣1;

          聯(lián)立 ,消去x,整理得(2m2+3)y2﹣4my﹣10=0,

          設(shè)A(x1,y1),D(x2,y2),則y1+y2=

          聯(lián)立 ,消去x,得(m2+1)y2﹣2my﹣1=0,

          設(shè)B(x3,y3),D(x3,y4),則y3+y4= ,

          又丨AB丨=丨CD丨,則 = ,即y3﹣y1=y2﹣y4,

          從而y1+y2=y3+y4,即 = ,解得m=0,

          ∴直線l的方程為x=﹣1


          【解析】(1)由題意的焦點(diǎn)坐標(biāo),求得t的值,則丨PO丨∈[2, ],利用三角形的面積公式,即可求得△POQ面積的取值范圍;(2)將直線l的方程,代入橢圓方程及圓的方程,利用韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得m的值,求得直線直線l的方程.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知 .
          (1)若函數(shù) 的圖象在點(diǎn) 處的切線平行于直線 ,求 的值;
          (2)討論函數(shù) 在定義域上的單調(diào)性;
          (3)若函數(shù) 上的最小值為 ,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知?jiǎng)訄AM恒過(guò)點(diǎn)(0,1),且與直線y=﹣1相切.
          (1)求圓心M的軌跡方程;
          (2)動(dòng)直線l過(guò)點(diǎn)P(0,﹣2),且與點(diǎn)M的軌跡交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于y軸對(duì)稱,求證:直線AC恒過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρcosθ+2=0.
          (1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
          (2)若直線C3的極坐標(biāo)方程為 ,設(shè)C3與C1的交點(diǎn)為M,N,P為C2上的一點(diǎn),且△PMN的面積等于1,求P點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)函數(shù)f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數(shù)圖象的一組奇對(duì)稱點(diǎn).若f(x)=ex﹣a(e為自然數(shù)的底數(shù))存在奇對(duì)稱點(diǎn),則實(shí)數(shù)a的取值范圍是(
          A.(﹣∞,1)
          B.(1,+∞)
          C.(e,+∞)
          D.[1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若不等式ln(x+2)+a(x2+x)≥0對(duì)于任意的x∈[﹣1,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(
          A.[0,+∞)
          B.[0,1]
          C.[0,e]
          D.[﹣1,0]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)P(2,0),曲線C的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的普通方程和極坐標(biāo)方程;
          (Ⅱ)過(guò)點(diǎn)P且傾斜角為 的直線l交曲線C于A,B兩點(diǎn),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知△ABC的直角頂點(diǎn)A在y軸上,點(diǎn)B(1,0),D為斜邊BC的中點(diǎn),且AD平行于x軸.
          (1)求點(diǎn)C的軌跡方程;
          (2)設(shè)點(diǎn)C的軌跡為曲線Γ,直線BC與Γ的另一個(gè)交點(diǎn)為E,以CE為直徑的圓交y軸于點(diǎn)M,N,記圓心為P,∠MPN=α,求α的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= ﹣2x+1. (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)當(dāng)0<a≤ 時(shí),求函數(shù)f(x)在區(qū)間[﹣a,a]上的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案