日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過點C(0,1)的橢圓(a>b>0)的離心率為,橢圓與x軸交于兩點A(a,0)、A(-a,0),過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q。
          (Ⅰ)當(dāng)直線l過橢圓右焦點時,求線段CD的長;
          (Ⅱ)當(dāng)點P異于點B時,求證:為定值。
          解:(Ⅰ)由已知得,解得
          所以橢圓方程為
          橢圓的右焦點為,此時直線的方程為代入橢圓方程得
          解得,代入直線l的方程得
          所以
          ;
          (Ⅱ)當(dāng)直線l與x軸垂直時與題意不符
          設(shè)直線l的方程為,代入橢圓方程得
          解得,代入直線l的方程得
          所以D點的坐標(biāo)為
          又直線AC的方程為,又直線BD的方程為,聯(lián)立得
          因此,又
          所以
          為定值。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在空間直角坐標(biāo)系O-xyz中,方程
          x2
          a2
          +
          y2
          b2
          +
          z2
          c2
          =1(a>b>c>0)
          表示中心在原點、其軸與坐標(biāo)軸重合的某橢球面的標(biāo)準(zhǔn)方程.2a,2b,2c分別叫做橢球面的長軸長,中軸長,短軸長.類比在平面直角坐標(biāo)系中橢圓標(biāo)準(zhǔn)方程的求法,在空間直角坐標(biāo)系O-xyz中,若橢球面的中心在原點、其軸與坐標(biāo)軸重合,平面xOy截橢球面所得橢圓的方程為
          x2
          9
          +
          y2
          16
          =1
          ,且過點M(1,2,
          23
          )
          ,則此橢球面的標(biāo)準(zhǔn)方程為
          x2
          9
          +
          y2
          16
          +
          z2
          36
          =1
          x2
          9
          +
          y2
          16
          +
          z2
          36
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          橢圓C的方程
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
          (Ⅰ)若橢圓的離心率e=
          3
          2
          ,直線l過點M(b,0),且
          OA
          OB
          =-
          12
          5
          ,求橢圓C的方程;
          (Ⅱ)直線l過橢圓的右焦點F,設(shè)向量
          OP
          =λ(
          OA
          +
          OB
          )(λ>0),若點P在橢C上,λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•崇明縣二模)已知橢C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2
          3
          ,且∠BF1F2=
          π
          6

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若過點Q(1,
          1
          2
          )引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點,且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標(biāo);
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應(yīng)線段AB上的點M,如圖1;將線段AB圍成一個離心率為
          3
          2
          的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點,長軸在x軸上,已知此時點A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應(yīng)的實數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個命題①f(
          k
          2
          )=6
          ;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(
          k
          2
          ,0)
          對稱;⑤函數(shù)f(m)=3
          3
          時AM過橢圓的右焦點.其中所有的真命題是(  )

          查看答案和解析>>

          同步練習(xí)冊答案