日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•崇明縣二模)已知橢C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長是4+2
          3
          ,且∠BF1F2=
          π
          6

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若過點(diǎn)Q(1,
          1
          2
          )引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.
          分析:(1)利用以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長是4+2
          3
          ,且∠BF1F2=
          π
          6
          ,建立方程,可求橢圓的幾何量,從而可得橢圓C的標(biāo)準(zhǔn)方程;
          (2)當(dāng)斜率l不存在時(shí),過點(diǎn)Q(1,
          1
          2
          )引曲線C的弦AB不被點(diǎn)Q平分;當(dāng)直線l的斜率為k時(shí),設(shè)方程與橢圓方程聯(lián)立,利用韋達(dá)定理及過點(diǎn)Q(1,
          1
          2
          )引曲線C的弦AB恰好被點(diǎn)Q平分,建立方程,即可求得結(jié)論.
          解答:解:(1)∵以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長是4+2
          3
          ,且∠BF1F2=
          π
          6

          ∴2a+2c=4+2
          3
          ,
          3
          2
          a=c

          ∴a=2,c=
          3

          b=
          a2-c2
          =1

          ∴橢圓方程為
          x2
          4
          +y2=1

          (2)當(dāng)直線l的斜率不存在時(shí),過點(diǎn)Q(1,
          1
          2
          )引曲線C的弦AB不被點(diǎn)Q平分;
          當(dāng)直線l的斜率為k時(shí),l:y-
          1
          2
          =k(x-1)與橢圓方程聯(lián)立,消元可得(1+4k2)x2-4k(2k-1)x+(1-2k)2-4=0
          ∵過點(diǎn)Q(1,
          1
          2
          )引曲線C的弦AB恰好被點(diǎn)Q平分,
          4k(2k-1)
          1+4k2
          =2
          ,
          ∴解得k=-
          1
          2

          1
          4
          +
          1
          4
          <1

          ∴點(diǎn)Q在橢圓內(nèi)
          ∴直線l:y-
          1
          2
          =-
          1
          2
          (x-1),即l:y=-
          1
          2
          x+1.
          點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查弦中點(diǎn)問題,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•崇明縣二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中抽取200件,對其等級系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率f的分布表如下:
          X 1 2 3 4 5
          f a 0.2 0.45 0.15 0.1
          則在所抽取的200件日用品中,等級系數(shù)X=1的件數(shù)為
          20
          20

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•崇明縣二模)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿足bn=
          1anan+1
          ,n∈N*,Tn為數(shù)列{bn}的前n項(xiàng)和.
          (1)求數(shù)列{an}的通項(xiàng)公式an和數(shù)列{bn}的前n項(xiàng)和Tn;
          (2)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
          (3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•崇明縣二模)設(shè)函數(shù) f(x)=
          2x      (x≤0)
          log2x (x>0)
          ,函數(shù)y=f[f(x)]-1的零點(diǎn)個(gè)數(shù)為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•崇明縣二模)已知函數(shù)f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,則f(x)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•崇明縣二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點(diǎn),則 
          AB
          CD
          =
          -1
          -1

          查看答案和解析>>

          同步練習(xí)冊答案