【題目】已知某民族品牌手機(jī)生產(chǎn)商為迎合市場需求,每年都會(huì)研發(fā)推出一款新型號(hào)手機(jī).該公司現(xiàn)研發(fā)了一款新型智能手機(jī)并投入生產(chǎn),生產(chǎn)這款手機(jī)的月固定成本為80萬元,每生產(chǎn)1千臺(tái),須另投入27萬元, 設(shè)該公司每月生產(chǎn)千臺(tái)并能全部銷售完,每1千臺(tái)的銷售收入為
萬元,且
.為更好推廣該產(chǎn)品,手機(jī)生產(chǎn)商每月還支付各類廣告費(fèi)用20萬元.
(Ⅰ)寫出月利潤(萬元)關(guān)于月產(chǎn)量
(千臺(tái))的函數(shù)解析式;
(Ⅱ)當(dāng)月產(chǎn)量為多少千臺(tái)時(shí),該公司在這一型號(hào)的手機(jī)生產(chǎn)中所獲月利潤最大?
【答案】(Ⅰ)(Ⅱ)9千臺(tái)
【解析】
(Ⅰ)首先計(jì)算出總成本,當(dāng)時(shí),
; 當(dāng)
時(shí),
.即可得出函數(shù)的解析式.
(Ⅱ)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,然后求解函數(shù)的最值即可得.
解:(Ⅰ)設(shè)月產(chǎn)量(千臺(tái)),則總成本為
萬元,則
,
每1千臺(tái)的銷售收入為萬元且
.
則當(dāng)時(shí),
,
則當(dāng)時(shí),
,
綜上可得,
(Ⅱ)①當(dāng)時(shí),由
,
得當(dāng)時(shí),
,單調(diào)遞增;
當(dāng)時(shí),
,單調(diào)遞減.
故;
②當(dāng) 時(shí),
,
當(dāng)且僅當(dāng)即
時(shí)取最大值
綜上,當(dāng)月產(chǎn)量為9千臺(tái)時(shí),該公司在這一型號(hào)的手機(jī)生產(chǎn)中所獲月利潤最大,利潤額為萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動(dòng)購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
學(xué)校計(jì)劃將捐款以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎(jiǎng)學(xué)金500元;綜合考核21-50名,獲二等獎(jiǎng)學(xué)金300元;綜合考核50名以后的不獲得獎(jiǎng)學(xué)金.
(1)若與
成線性相關(guān),則某天售出9箱水時(shí),預(yù)計(jì)收入為多少元?
(2)假設(shè)甲、乙、丙三名學(xué)生均獲獎(jiǎng),且各自獲一等獎(jiǎng)和二等獎(jiǎng)的可能性相同,求三人獲得獎(jiǎng)學(xué)金之和不超過1000元的概率.
附:回歸方程,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對該單位120名職工進(jìn)行一次業(yè)務(wù)技能測試,測試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測試結(jié)果,將它們編號(hào)后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號(hào)\測試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項(xiàng)測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.
①設(shè)抽取的這10名職工中,每名職工測試合格的項(xiàng)數(shù)為,根據(jù)上面的測試結(jié)果統(tǒng)計(jì)表,列出
的分布列,并估計(jì)這120名職工的平均得分;
②假設(shè)各名職工的各項(xiàng)測試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計(jì)算公式為,其中
為第
項(xiàng)測試難度,
為第
項(xiàng)合格的人數(shù),
為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測試合格人數(shù)及相應(yīng)的實(shí)測難度如下表(表2):
表2:
測試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
實(shí)測合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計(jì)量,其中
為第
項(xiàng)的實(shí)測難度,
為第
項(xiàng)的預(yù)測難度(
).規(guī)定:若
,則稱該次測試的難度預(yù)測合理,否則為不合理,測試前,預(yù)估了每個(gè)預(yù)測項(xiàng)目的難度,如下表(表3)所示:
表3:
測試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
預(yù)測前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程及曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線
與曲線
相交于兩點(diǎn)
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中,四邊形
為矩形,二面角
為
,
,
,
,
,
.
(1)求證:平面
;
(2)為線段
上的點(diǎn),當(dāng)
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓:
經(jīng)過伸縮變換
,后得到曲線
以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
求曲線
的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
在
上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中
為頂點(diǎn),
為底面圓心)的側(cè)面積與底面積的比是
,則圓錐
與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a∈R,數(shù)列{an}滿足a1=a,an+1=an﹣(an﹣2)3,則( 。
A.當(dāng)a=4時(shí),a10>210B.當(dāng)時(shí),a10>2
C.當(dāng)時(shí),a10>210D.當(dāng)
時(shí),a10>2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某高校綜合評價(jià)有兩步:第一步是材料初審,若材料初審不合格,則不能進(jìn)入第二步面試;若材料初審合格,則進(jìn)入第二步面試.只有面試合格者,才能獲得該高校綜合評價(jià)的錄取資格,現(xiàn)有A,B,C三名學(xué)生報(bào)名參加該高校的綜合評價(jià),假設(shè)A,B,C三位學(xué)生材料初審合格的概率分別是,
,
;面試合格的概率分別是
,
,
.
(1)求A,B兩位考生有且只有一位考生獲得錄取資格的概率;
(2)記隨機(jī)變量X為A,B,C三位學(xué)生獲得該高校綜合評價(jià)錄取資格的人數(shù),求X的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com