日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:

          售出水量(單位:箱)

          7

          6

          6

          5

          6

          收入(單位:元)

          165

          142

          148

          125

          150

          學(xué)校計劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.

          (1)若成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?

          (2)假設(shè)甲、乙、丙三名學(xué)生均獲獎,且各自獲一等獎和二等獎的可能性相同,求三人獲得獎學(xué)金之和不超過1000元的概率.

          附:回歸方程,其中

          【答案】(1)206;(2).

          【解析】試題分析:(1)由題意可求得,,從而求得,,即可求出線性回歸方程,將代入求出即可;(2)設(shè)事件:甲獲一等獎;事件:甲獲二等獎;事件:乙獲一等獎,事件:乙獲二等獎,事件:丙獲一等獎;事件:丙獲二等獎,利用列舉法能求出三人獲得獎學(xué)金之和不超過1000元的概率.

          試題解析:(1)由題意可得,.

          ∴當(dāng)時,,即某天售出9箱水的預(yù)計收益是206

          (2)設(shè)事件:甲獲一等獎;事件:甲獲二等獎;事件:乙獲一等獎,事件:乙獲二等獎,事件:丙獲一等獎;事件:丙獲二等獎,則總事件有:,8種情況.甲、乙、丙三人獎金不超過1000的事件有1種情況,則求三人獲得獎學(xué)金之和不超過1000元的概率

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x>0時,(x-2)exx+2>0.

          (2)證明:當(dāng)a[0,1) 時,函數(shù)g(x)= (x>0) 有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如表所示:

          (1)由頻率分布直方圖,估計這100人年齡的平均數(shù);

          (2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

          45歲以下

          45歲以上

          總計

          不支持

          支持

          總計

          參考數(shù)據(jù):

          P(K2≥k0)

          0.100

          0.050

          0.010

          0.001

          k0

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)是定義域為R上的奇函數(shù),當(dāng)x0時,fx=x2+2x

          1)求fx)的解析式;

          2)若不等式ft﹣2+f2t+1)>0成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)若,且,求的最小值;

          (2)若,且上恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )

          A. B. C. D. 1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為為參數(shù),),以為極點,軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          (1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

          (2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)對任意實數(shù)x、y恒有,當(dāng)x>0時,f(x)<0,且.

          (1)判斷的奇偶性;

          (2)在區(qū)間[-3,3]上的最大值;

          (3)對所有的恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某良種培育基地正在培育一種小麥新品種A,將其與原有的一個優(yōu)良品種B進(jìn)行對照試驗,兩種小麥各種植了24畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:

          品種A:357,359367,368,375,388392,399,400405,412,414415,421423,423427,430,430,434,443445,451454

          品種B363,371,374,383,385386,391392,394,395,397,397,400,401401,403,406407,410412,415,416,422430

          1)畫出莖葉圖.

          2)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點?

          3)通過觀察莖葉圖,對品種AB的畝產(chǎn)量及其穩(wěn)定性進(jìn)行比較,寫出統(tǒng)計結(jié)論。

          查看答案和解析>>

          同步練習(xí)冊答案