日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在區(qū)間(0,
          π
          2
          )上的函數(shù)y=
          3
          sinx的圖象與函數(shù)y=cosx的圖象的交點為P,過P作PP1⊥x軸于點P1,直線PP1與y=tanx的圖象交于點P2,則線段P1P2的長為( 。
          分析:通過cosx=
          3
          sinx可求出x的值,得到P的橫坐標(biāo),將求P1P2的長轉(zhuǎn)化為求tanx的值,從而得到答案.
          解答:解:因為過P作PP1⊥x軸于點P1,直線PP1與y=tanx的圖象交于點P2
          線段P1P2的長即為點P2點的縱坐標(biāo)的值即tanx的值,
          且其中的x滿足cosx=
          3
          sinx,解得sinx=
          3
          3
          .因為x∈(0,
          π
          2
          ),解得x=
          π
          6
          ,
          線段P1P2的長為tan
          π
          6
          =
          3
          3

          故選C.
          點評:考查三角函數(shù)的圖象、函數(shù)值的求法,考查計算能力,數(shù)形結(jié)合思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、已知定義在區(qū)間(0,+∞)的非負(fù)函數(shù)f(x)的導(dǎo)數(shù)為f'(x),其滿足xf'(x)+f(x)<0,則在0<a<b時,下列結(jié)論一定正確的是
          (2)(3)

          (1)af'(a)<bf'(b)(2)af(a)>bf(b)(3)bf(a)>af(b)(4)bf'(a)>af'(b)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          ①求f(1)的值;
          ②判斷f(x)的單調(diào)性;
          ③若f(3)=-1,解不等式f(|x|)<-2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)判斷并證明f(x)的單調(diào)性;
          (3)若f(3)=-1,求f(x)在[2,9]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值.
          (2)判斷f(x)的單調(diào)性.
          (3)若f(3)=-1,解不等式f(|x|)<-2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2)
          ,且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)判斷f(x)的單調(diào)性并予以證明;
          (3)若f(3)=-1,解不等式f(log2x)>-2.

          查看答案和解析>>

          同步練習(xí)冊答案