【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),其中
.證明:
的圖象在
圖象的下方.
【答案】(1) .
(2) .
(3)證明見解析.
【解析】分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算和
的值,點(diǎn)斜式求出切線方程即可.
(Ⅱ)設(shè),并求導(dǎo).將問(wèn)題轉(zhuǎn)化為在區(qū)間
上,
恒成立,或者
恒成立,通過(guò)特殊值
,且
,確定
恒成立,通過(guò)參數(shù)分離,求得實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè),將問(wèn)題轉(zhuǎn)化為證明
,利用函數(shù)的導(dǎo)數(shù)確定函數(shù)最小值
在區(qū)間
,并證明
. 即
的圖象在
圖象的下方.
詳解:解:(Ⅰ)求導(dǎo),得,
又因?yàn)?/span>
所以曲線在點(diǎn)
處的切線方程為
(Ⅱ)設(shè)函數(shù),
求導(dǎo),得,
因?yàn)楹瘮?shù)在區(qū)間
上為單調(diào)函數(shù),
所以在區(qū)間上,
恒成立,或者
恒成立,
又因?yàn)?/span>,且
,
所以在區(qū)間,只能是
恒成立,即
恒成立.
又因?yàn)楹瘮?shù)在在區(qū)間
上單調(diào)遞減,
,
所以.
(Ⅲ)證明:設(shè).
求導(dǎo),得.
設(shè),則
(其中
).
所以當(dāng)時(shí),
(即
)為增函數(shù).
又因?yàn)?/span>,
所以,存在唯一的,使得
且與
在區(qū)間
上的情況如下:
- | 0 | + | |
↘ | ↗ |
所以,函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增,
所以
.
又因?yàn)?/span>,
,
所以,
所以,即
的圖象在
圖象的下方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)為的等比數(shù)列
不是遞減數(shù)列,其前n項(xiàng)和為
,且
成等差數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的最大項(xiàng)的值與最小項(xiàng)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍;
(2)當(dāng)b=1時(shí),若對(duì)任意x∈[0,1],-1≤f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知六棱錐的底面是正六邊形,
平面
,
,給出下列結(jié)論:
①;
②直線平面
;
③平面平面
;
④異面直線與
所成角為
;
⑤直線與平面
所成角的余弦值為
.
其中正確的有_______(把所有正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)產(chǎn)品有若千零部件構(gòu)成,加工時(shí)需要經(jīng)過(guò)6道工序,分別記為.其中,有些工序因?yàn)槭侵圃觳煌牧悴考钥梢栽趲着_(tái)機(jī)器上同時(shí)加工;有些工序因?yàn)槭菍?duì)同一個(gè)零部件進(jìn)行處理,所以存在加工順序關(guān)系.若加工工序
必須要在工序
完成后才能開工,則稱
為
的緊前工序.現(xiàn)將各工序的加工次序及所需時(shí)間(單位:小時(shí))列表如下:
工序 | ||||||
加工時(shí)間 | 3 | 4 | 2 | 2 | 2 | 1 |
緊前工序 | 無(wú) | 無(wú) |
現(xiàn)有兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時(shí)間是__________小時(shí).(假定每道工序只能安排在一臺(tái)機(jī)器上,且不能間斷).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心
位于
軸正半軸上,與直線
相切且被軸
截得的弦長(zhǎng)為
,圓
的面積小于13.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線
與圓
交于不同的兩點(diǎn)
,以
為鄰邊作平行四邊形
.是否存在這樣的直線
,使得直線
與
恰好平行?如果存在,求出
的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代著名的周髀算經(jīng)
中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷
長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺六寸
意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長(zhǎng)度差為
分;且“冬至”時(shí)日影長(zhǎng)度最大,為1350分;“夏至”時(shí)日影長(zhǎng)度最小,為160分
則“立春”時(shí)日影長(zhǎng)度為
A. 分B.
分C.
分D.
分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓
的左、右焦點(diǎn)分別為
,
,
為
橢圓上一點(diǎn),且
垂直于
軸,連結(jié)
并延長(zhǎng)交橢圓于另一點(diǎn)
,設(shè)
.
(1)若點(diǎn)的坐標(biāo)為
,求橢圓
的方程及
的值;
(2)若,求橢圓
的離心率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com