日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

          A. B. C. D.

          【答案】C

          【解析】設(shè)球半徑為R,圓柱的體積為時圓柱的體積最大為 ,因此材料利用率= ,選C.

          點睛:空間幾何體與球接、切問題的求解方法

          求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.

          型】單選題
          結(jié)束】
          12

          【題目】已知拋物線 在點處的切線與曲線 相切,若動直線分別與曲線、相交于、兩點,則的最小值為( )

          A. B. C. D.

          【答案】D

          【解析】

          ,

          D

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】12分)已知函數(shù)fx=

          1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

          2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為橢圓的一個焦點過原點的直線與橢圓交于兩點,, 的面積為.

          (Ⅰ)求橢圓的離心率;

          (Ⅱ)若,過點且不與坐標(biāo)軸垂直的直線交橢圓于兩點,線段的垂直平分線與軸交于點,求點橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線 的左右焦點分別為, 右支上的點,線段的左支于點,若是邊長等于的等邊三角形,則雙曲線的標(biāo)準方程為( )

          A. B. C. D.

          【答案】A

          【解析】

          即雙曲線的標(biāo)準方程為,選A.

          型】單選題
          結(jié)束】
          11

          【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
          (1)求A的大。
          (2)若sinB+sinC=1,試判斷△ABC的形狀.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax3+cx(a>0),其圖象在點(1,f(1))處的切線與直線 x﹣6y+21=0垂直,導(dǎo)函數(shù)
          f′(x)的最小值為﹣12.
          (1)求函數(shù)f(x)的解析式;
          (2)求y=f(x)在x∈[﹣2,2]的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:

          網(wǎng)購金額

          (單位:千元)

          頻數(shù)

          頻率

          3

          9

          15

          18

          合計

          60

          若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.

          (1)確定,,的值,并補全頻率分布直方圖;

          (2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量 =[ ],并且矩陣M對應(yīng)的變換將點(﹣1,2)變換成(﹣2,4).
          (1)求矩陣M;
          (2)求矩陣M的另一個特征值.

          查看答案和解析>>

          同步練習(xí)冊答案