日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個最高點的距離為π.
          (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)若△ABC三個內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.

          【答案】解:f(x)= sin2ωx﹣ (1+cos2ωx)﹣ =sin(2ωx﹣ )﹣1,
          ∵f(x)圖象上相鄰兩個最高點的距離為π,
          =π,即ω=1,
          則f(x)=sin(2x﹣ )﹣1,
          (Ⅰ)令﹣ +2kπ≤2x﹣ +2kπ,k∈Z,得到﹣ +kπ≤x≤kπ+ ,k∈Z,
          則函數(shù)f(x)的單調(diào)遞增區(qū)間為[﹣ +kπ,kπ+ ],k∈Z;
          (Ⅱ)由f(C)=0,得到f(C)=sin(2C﹣ )﹣1=0,即sin(2x﹣ )=1,
          ∴2C﹣ = ,即C= ,
          由正弦定理 = 得:b=
          把sinB=3sinA代入得:b=3a,
          由余弦定理及c= 得:cosC= = = ,
          整理得:10a2﹣7=3a2
          解得:a=1,
          則b=3.
          【解析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,整理為一個角的正弦函數(shù),根據(jù)題意確定出ω的值,確定出f(x)解析式,利用正弦函數(shù)的單調(diào)性求出函數(shù)f(x)的單調(diào)遞增區(qū)間即可;(Ⅱ)由f(C)=0,求出C的度數(shù),利用正弦定理化簡sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a與b的值即可.
          【考點精析】本題主要考查了兩角和與差的正弦公式和正弦函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握兩角和與差的正弦公式:;正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
          (I)求函數(shù)y=f(x)﹣(x+1)的最小值;
          (II)證明:當(dāng)k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
          (III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
          (1)當(dāng)a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
          (2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某競賽的題庫系統(tǒng)有60%的自然科學(xué)類題目,40%的文化生活類題目(假設(shè)題庫中的題目總數(shù)非常大),參賽者需從題庫中抽取3個題目作答,有兩種抽取方法:方法一是直接從題庫中隨機抽取3個題目;方法二是先在題庫中按照題目類型用分層抽樣的方法抽取10個題目作為樣本,再從這10個題目中任意抽取3個題目.

          (1)兩種方法抽取的3個題目中,恰好有1個自然科學(xué)類題目和2個文化生活類題目的概率是否相同?若相同,說明理由;若不同,分別計算出兩種抽取方法對應(yīng)的概率.

          (2)已知某參賽者抽取的3個題目恰好有1個自然科學(xué)類題目和2個文化生活類題目,且該參賽者答對自然科學(xué)類題目的概率為,答對文化生活類題目的概率為.設(shè)該參賽者答對的題目數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
          ①M={ };
          ②M={(x,y)|y=sinx+1};
          ③M={(x,y)|y=log2x};
          ④M={(x,y)|y=ex﹣2}.
          其中是“垂直對點集”的序號是(
          A.①②
          B.②③
          C.①④
          D.②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)過對K2的統(tǒng)計量的研究,得到了若干個觀測值,當(dāng)K2≈6.706時,我們認(rèn)為兩分類變量A、B(  )

          A. 67.06%的把握認(rèn)為AB有關(guān)系 B. 99%的把握認(rèn)為AB有關(guān)系

          C. 0.010的把握認(rèn)為AB有關(guān)系 D. 沒有充分理由說明AB有關(guān)系

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是(

          A.f(x)=x2
          B.f(x)=sinx
          C.f(x)=ex
          D.f(x)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:

          廣告費用x(萬元)

          4

          2

          3

          5

          銷售額y(萬元)

          49

          26

          39

          54

          (1)求根據(jù)上表可得線性回歸方程=x+

          (2) 模型預(yù)報廣告費用為6萬元時銷售額為多少

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于函數(shù)f(x)=sin(x﹣)sin(x+),有下列命題:
          ①此函數(shù)可以化為f(x)=﹣sin(2x+);
          ②函數(shù)f(x)的最小正周期是π,其圖象的一個對稱中心是( , 0);
          ③函數(shù)f(x)的最小值為﹣ , 其圖象的一條對稱軸是x=;
          ④函數(shù)f(x)的圖象向右平移個單位后得到的函數(shù)是偶函數(shù);
          ⑤函數(shù)f(x)在區(qū)間(﹣ , 0)上是減函數(shù).
          其中所有正確的命題的序號個數(shù)是( 。
          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          同步練習(xí)冊答案