【題目】已知圓的圓心
在拋物線
上,圓
過原點(diǎn)且與拋物線的準(zhǔn)線相切.
(1)求該拋物線的方程;
(2)過拋物線焦點(diǎn)的直線
交拋物線于
,
兩點(diǎn),分別在點(diǎn)
,
處作拋物線的兩條切線交于
點(diǎn),求三角形
面積的最小值及此時(shí)直線
的方程.
【答案】(1) ;(2) 三角形PAB面積最小值為4,此時(shí)直線L的方程為
.
【解析】【試題分析】(1)寫出圓心/半徑,焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,根據(jù)原點(diǎn)在圓上及圓心到拋物線的距離建立方程,解方程組求得的值,由此得到拋物線方程.(2)設(shè)出直線
的方程,聯(lián)立直線的方程和拋物線線的方程,寫出韋達(dá)定理,利用導(dǎo)數(shù)求出切線的方程,求出交點(diǎn)
的坐標(biāo),利用弦長公式和點(diǎn)到直線距離公式寫出三角形面積的表達(dá)式,并由此求得最小值.
【試題解析】
(1)由已知可得圓心,半徑
,焦點(diǎn)
,準(zhǔn)線
因?yàn)閳AC與拋物線F的準(zhǔn)線相切,所以,
且圓C過焦點(diǎn)F,
又因?yàn)閳AC過原點(diǎn),所以圓心C必在線段OF的垂直平分線上,
即
所以,即
,拋物線F的方程為
(2)易得焦點(diǎn),直線L的斜率必存在,設(shè)為k,即直線方程為
設(shè)
得
,
,
對(duì)求導(dǎo)得
,即
直線AP的方程為,即
,
同理直線BP方程為
設(shè),
聯(lián)立AP與BP直線方程解得,即
所以,點(diǎn)P到直線AB的距離
所以三角形PAB面積,當(dāng)僅當(dāng)
時(shí)取等號(hào)
綜上:三角形PAB面積最小值為4,此時(shí)直線L的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問250名不同性別的高中生在購買食物時(shí)是否看營養(yǎng)說明書,得到如下列聯(lián)表:
女 | 男 | 總計(jì) | |
讀營養(yǎng)說明書 | 90 | 60 | 150 |
不讀營養(yǎng)說明書 | 30 | 70 | 100 |
總計(jì) | 120 | 130 | 250 |
從調(diào)查的結(jié)果分析,認(rèn)為性別和讀營養(yǎng)說明書的關(guān)系為( )
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
A. 95%以上認(rèn)為無關(guān) B. 90%~95%認(rèn)為有關(guān) C. 95%~99.9%認(rèn)為有關(guān) D. 99.9%以上認(rèn)為有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,
在直線
.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令,數(shù)列
的前n項(xiàng)和為
.
(ⅰ)求;
(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ<
(n∈N
)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若存在,使不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復(fù)數(shù)z∈R,則 ∈R.
其中的真命題為( 。
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為
,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(Ⅰ)寫出C的普通方程;
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與函數(shù)
相鄰兩支曲線的交點(diǎn)的橫坐標(biāo)分別為
,
,且有
,假設(shè)函數(shù)
的兩個(gè)不同的零點(diǎn)分別為
,
,若在區(qū)間
內(nèi)存在兩個(gè)不同的實(shí)數(shù)
,
,與
,
調(diào)整順序后,構(gòu)成等差數(shù)列,則
的值為( )
A. 或
B.
或
C. 或
或不存在D.
或
或不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),正數(shù)
滿足
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com