日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          13
          x3+x2-2

          (Ⅰ)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)y=f′(x)的圖象上,求證:點(diǎn)(n,Sn)也在y=f′(x)的圖象上;
          (Ⅱ)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.
          分析:(Ⅰ)由題意知f′(x)=x2+2x,由點(diǎn)(an,an+12-2an+1)(n∈N+)在函數(shù)y=f′(x)的圖象上,知(an-1-an)(an+1-an-2)=0,所以Sn=3n+
          n(n-1)
          2
          ×2=n2+2n
          =f'(n),故點(diǎn)(n,Sn)也在函數(shù)y=f′(x)的圖象上.
          (Ⅱ)由f'(x)=0,得x=0或x=-2.然后列表求解函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.
          解答:解:(Ⅰ)證明:因?yàn)?span id="tuy6cay" class="MathJye">f(x)=
          1
          3
          x3+x2-2,所以f′(x)=x2+2x,
          由點(diǎn)(an,an+12-2an+1)(n∈N+)在函數(shù)y=f′(x)的圖象上,
          又an>0(n∈N+),所以(an-1-an)(an+1-an-2)=0,
          所以Sn=3n+
          n(n-1)
          2
          ×2=n2+2n
          ,又因?yàn)閒′(n)=n2+2n,所以Sn=f'(n),
          故點(diǎn)(n,Sn)也在函數(shù)y=f′(x)的圖象上.

          (Ⅱ)解:f'(x)=x2+2x=x(x+2),由f'(x)=0,得x=0或x=-2.
          當(dāng)x變化時,f'(x)﹑f(x)的變化情況如下表:
          精英家教網(wǎng)
          注意到|(a-1)-a|=1<2,從而
          ①當(dāng),此時f(x)無極小值;
          ②當(dāng)a-1<0<a,即0<a<1時,f(x)的極小值為f(0)=-2,此時f(x)無極大值;
          ③當(dāng)a≤-2或-1≤a≤0或a≥1時,f(x)既無極大值又無極小值.
          點(diǎn)評:本題主要考查函數(shù)極值、等差數(shù)列等基本知識,考查分類與整合、轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,考查分析問題和解決問題的能力.對于a的討論標(biāo)準(zhǔn)找不到或?qū)ζ溆懻摬蝗斐山Y(jié)果錯誤.分類討論思想在數(shù)學(xué)中是非常重要的思想之一,所以希望能加強(qiáng)這方面的訓(xùn)練.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個極大值點(diǎn);
          ②?x∈(8,+∞),f(x)>0.
          則實(shí)數(shù)a的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)x≥1時,不等式f(x)≥
          k
          x+1
          恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案